Heteronuclear Fe-Mn Cyclopentadienyl Complexes Supported on Boehmite. Thermochemistry and Thermodynamics of their Decomposition

Authors

  • A.I. Rustamova Institute of Catalysis and Inorganic Chemistry, 113, H. Javid, AZ1143, Baku, Azerbaijan
  • R.M. Muradxanov Institute of Catalysis and Inorganic Chemistry, 113, H. Javid, AZ1143, Baku, Azerbaijan
  • S.N. Osmanova Institute of Catalysis and Inorganic Chemistry, 113, H. Javid, AZ1143, Baku, Azerbaijan; Khazar University, 41 Mahsati Str., AZ1096, Baku, Azerbaijan
  • F.K. Pashayeva Institute of Catalysis and Inorganic Chemistry, 113, H. Javid, AZ1143, Baku, Azerbaijan
  • A.N. Mammadov Institute of Catalysis and Inorganic Chemistry, 113, H. Javid, AZ1143, Baku, Azerbaijan; Azerbaijan Technical University, H. Javid Ave. 25, AZ1073 Baku, Azerbaijan
  • D.B. Tagiyev Institute of Catalysis and Inorganic Chemistry, 113, H. Javid, AZ1143, Baku, Azerbaijan
  • E.H. Ismailov Institute of Catalysis and Inorganic Chemistry, 113, H. Javid, AZ1143, Baku, Azerbaijan

DOI:

https://doi.org/10.18321/ectj1639

Keywords:

supported Fe-Ni cyclopentadienyl complexes, boehmite, thermal decomposition

Abstract

Boehmite samples with compounds of the composition (C5H5)2FeMnX2(μ-CO)n, where X=Cl, Br and n=1.2, precipitated at room temperature from tetrahydrofuran solutions and then heated in an air flow up to 873 K were obtained and characterized using X-ray diffractometry, infrared Fourier spectroscopy, electron magnetic resonance and temperature-programmed desorption methods. It was shown that the thermal decomposition of these compounds applied to the boehmite samples in the range from room temperature to 873 K occurs stepwise and consists of at least two stages. The first stage of thermal decomposition occurs in the range of 453–753 K, and the second – in the range of 813–843 K. The XRD data show that when calcining at 873 K the boehmite samples with the applied compounds of the above composition and containing these compounds less than 10 wt.%, the diffraction patterns show only reflections characteristic of poorly crystallized aluminum oxide. However, the electron paramagnetic resonance (EPR) spectra of these samples clearly show intense signals characteristic of superpara/ferromagnetic particles of iron and manganese oxides, as well as EPR signals from isolated Fe3+ substituting Al3+ ions in the aluminum oxide structure. EPR spectra most of the iron and manganese is stabilized on the surface of poorly crystallized aluminum oxide in the form of nanostructured iron and manganese oxides.

References

(1). M.K. Samantaray, S.K. Mishra, A. Saidi, J.-M. Basset, J. Organomet. Chem. 945 (2021) 121864. Crossref

(2). M.K. Samantaray, E. Pump, A. Bendjeriou-Sedjerari, et al., Chem. Soc. Rev. 47 (2018) 8403–8437. Crossref

(3). S.L. Scott, J.M. Basset, G.P. Niccolai, et al. Surface organometallic chemistry: a molecular approach to surface catalysis. New Journal of Chemistry 18 (1994) 115–122. hal-00006016

(4). P. Rouge, A. Garron, S. Norsic, et al., Mol. Catal. 471 (2019) 21–26. Crossref

(5). C. Copéret, A. Comas-Vives, M.P. Conley, et al., Chem. Rev. 116 (2016). Crossref

(6). I. Unlu, J.A. Spencer, K.R. Johnson, et al., Phys. Chem. Chem. Phys. 20 (2018) 7862–7874. Crossref

(7). R. Anwander, Chem. Mater. 13 (2001) 4419–4438. Crossref

(8). C. Coperet, M. Chabanas, R.P. Saint-Arroman, J.M. Basset, Angew. Chem. Int. Ed. 42 (2003) 156–181. Crossref

(9). H. Werner, Angew. Chem. Int. Ed. 51 (2012) 6052–6058. Crossref

(10). F Ossola, P Tomasin, F Benetollo, et al., Inorg. Chim. Acta 353 (2003) 292-300. Crossref

(11). N. Merle, F.L. Quemener, S. Barman, et al., Chem. Commun. 53 (2017) 11338–11341. Crossref

(12). Z.S. Qureshi, A. Hamieh, S. Barman, et al., Inorg. Chem. 56 (2017) 861–871. Crossref

(13). N. Hall Jacklyn, A. Chapovetsky, U. Kanbur, et al., ACS Appl. Mater. Interfaces 15 (2023) 53498–53514. Crossref

(14). K. Sekerbayev, G. Mussabek, Y. Shabdan, Y. Taurbayev, Eurasian Chem.-Technol. J. 23 (2021) 89–93. Crossref

(15). S.D. Pike, A.S. Weller, Phil. Trans. R. Soc. A 373 (2015). Crossref

(16). L.A Williams, N. Guo, A. Motta, et al., PNAS 110 (2012) 413–418. Crossref

(17). K.K. Samudrala, M.P. Conley, Chem. Commun. 59 (2023) 4115–4127. Crossref

(18). A.I. Rustamova, Z.G. Gurbanov, Z.M. Mammadova, et al., Chemical Problems 3 (2023) 251–261. Crossref

(19). A.I. Rustamova, Z.M. Mammadova, S.N. Osmanova, et al., Thermal stability of cyclopentadienyliron-manganese(cobalt)-carbonyl halides adsorbed on alumina and thermodynamics of their decomposition. Ukrainian Conference with International Participation "Chemistry, Physics and Technology of Surface", Book of abstracts, 11-12 October, 2023, Kyiv, Ukraine. URL

(20). A. Rustamova, Z. Gurbanov, S. Osmanova, et al., Thermal stability of mono- bi, and trinuclear carbinol derivatives of ferrocene and thermodynamics of their pyrolysis. Abstract book. 17th International Conference of Physical Chemistry ROMPHYSCHEM-17. September 25-27, 2023, Bucharest–ROMANIA. URL

(21). A.I. Rustamova, A.N. Mammadov, E.H. Ismailov.Thermal stability and thermodynamics of the decomposition of ferrocene and some of its one-, two-, and trinuclear derivatives. All Sciences Proceedings, 1st International Conference on Modern and Advanced Research, July 29-31, 2023, Konya, Turkey. URL

(22). G.Z. Suleymanov, M.A. Gurbanov, A.Kh. Akbarov, et al., Azerbaijan Chemical Journal 4 (2017) 48–54. URL

(23). A.G. Morachevskij, I.B. Sladkov, G. Firsova. Termodinamicheskie raschety v himii i metallurgii [Thermodynamic calculations in chemistry and metallurgy], 2021, 208 p. (In Russian). URL

(24). V.A. Rzaguliev, A.N. Mamedov, O.S. Kerimli, Sh.G. Mamedov, Russ. J. Inorg. Chem. 65 (2020) 1899–1904. Crossref

(25). Chemical Science and Education in Russia. Thermal constants of substances [Termicheskie Konstanty Veshhestv]. (in Russian). URL

(26). O.V. Krol, A.I. Druzhinina, R.M. Varushchenko, et al., Russ. J. Phys. Chem. 84 (2010) 771–777. Crossref

(27). O.V. Krol, A. I. Druzhinina, R.M. Varushchenko, et al., J. Chem. Thermodyn. 40 (2008) 549–557. Crossref

(28). O.V. Krol, A.I. Druzhinina, R.M. Varushchenko, et al., J. Chem. Thermodyn. 40 (2008) 549–557. Crossref

(29). M. Fulem, K. Ruzicka, C. Cervinka, et al., J. Chem. Thermodyn. 57 (2013) 530–540. Crossref

(30). A. Boumaza, L. Favaro, J. Ledion, et al., J. Solid State Chem. 182 (2009) 1171–1176. Crossref

(31). G. Štefanić, S. Musić, Croat. Chem. Acta 84 (4) (2011) 481–485. Crossref

(32). Y. Rozita, R. Brydson, A.J. Scott, J. Phys.: Conf. Ser. 241 (2010) 012096. Crossref

(33). T. Kim, M. Shima, J. Appl. Phys. 101 (2007) 09M516. Crossref

(34). M.M. Can, M. Coşkun, T. Fırat, J. Alloys Compd. 542 (2012) 241–247. Crossref

(35). I.S. Golovina, B.D. Shanina, S.P. Kolesnik, et al., Phys. Stat. Sol. B 249 (2012) 2263–2271. Crossref

(36). C.T. Hseih, W.L. Huang, J.T. Lue, J. Phys. Chem. Solids 63 (2002) 733–741. Crossref

(37). A.A. Jahagirdar, N. Dhananjaya, D.L. Monika, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 104 (2013) 512-518. Crossref

(38). R.-M. Tribó, J. Ros, J. Pans, J. Organomet. Chem. 676 (2003) 38–42. Crossref

(39). M. Malischewski, M. Adelhardt, J. Sutter, et al., Science 353 (2016) 678–682. Crossref

Downloads

Published

2024-10-22

How to Cite

Rustamova, A., Muradxanov, R., Osmanova, S., Pashayeva, F., Mammadov, A., Tagiyev, D., & Ismailov, E. (2024). Heteronuclear Fe-Mn Cyclopentadienyl Complexes Supported on Boehmite. Thermochemistry and Thermodynamics of their Decomposition. Eurasian Chemico-Technological Journal, 26(3), 161–168. https://doi.org/10.18321/ectj1639

Issue

Section

Articles