Two-Stage Conversion of Carbon Dioxide to Methanol on Co-Pd-Containing Catalysts Based on Aluminosilicates at Atmospheric Pressure
DOI:
https://doi.org/10.18321/ectj1654Keywords:
Carbon dioxide conversion, Pd-Co-containing catalysts, Methane, MethanolAbstract
A two-stage process for CO2 conversion into methanol under continuous flow and atmospheric pressure conditions is proposed, using a bimetallic cobalt–palladium catalyst supported on a Siral-type aluminosilicate (Co-Pd/Siral). In the first stage, CO2 is hydrogenated to methane at 473–523 K according to the reaction: CO2 + 4H2 → CH4 + 2H2O, carried out in the first reactor. After removing the water formed, the second stage involves the conversion of methane, unreacted CO2, and H2 into methanol in a second reactor at 573 K. The introduction of 0.5 wt.% palladium into the 10 wt.% Co/Siral catalyst was shown to promote methanol formation, with a maximum yield of 3.3% observed at 573 K. It is suggested that the catalytically active sites for CO2 hydrogenation to methane are nanosized Co, CoOx particles, while methanol is formed through the oxidation of methane over nanosized PdO particles, following the reaction: PdO + CH4 → Pd + CH3OH. Methane is oxidized by PdO, and the Pd–PdO redox cycle is sustained by carbon dioxide through the reaction: Pd + CO2 → PdO + CO. In addition, cobalt oxides (CoOx) contribute to CO2 activation, significantly facilitating the catalytic cycle.
References
(1) M.A. Shah, A.L. Shibiru, V. Kumar, V.C. Srivastava, Carbon dioxide conversion to value-added products and fuels: opportunities and challenges: a critical review. Int. J. Green Energy, 2023. Crossref
(2) E.C. Ra, K.Y. Kim, E.H. Kim, H. Lee, K. An, J.S. Lee, Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 10 (2020) 11318–11345. Crossref
(3) G. Yergaziyeva, E. Kutelia, K. Dossumov, D. Gventsadze, N. Jalabadze, T. Dzigrashvili, L. Nadaraia, O. Tsurtsumia, M.M. Anissova, M.M. Mambetova, B. Eristavi, N. Khudaibergenov, N. Effect of Lanthanum Oxide on the Activity Ni-Co/Diatomite Catalysts in Dry Reforming of Methane. Eurasian Chem.-Technol. J. 25 (2023) 21–32. Crossref
(4). S.O. Soloviev, Prospects for the Development of Nanocomposite Catalysts for the Oxidative Conversion of C1-C4 Alkanes with Carbon Dioxide to Produce Hydrogen/Synthesis Gas and Organic Compounds: A Review. Theor. Exp. Chem. 59 (2023) 307–323. Crossref
(5) Sh.F. Taghiyeva, E.H. Ismailov. Heterogeneous catalytic hydrogenation of carbon dioxide into hydrocarbons: achievements and prospects. Сhemical Problems 18 (2020) 485–500. Crossref
(6) R-P. Ye, J. Ding, W. Gong, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10 (2019) 5698. Crossref
(7) S.F. Tagiyeva, N.M. Aliyeva, E.H. Ismailov, et al. Structure and Magnetic Properties of Fe,Ni(Zr)/Al Oxide Catalysts Under the Conditions of Methanation of Carbon Dioxide. Theor. Exp. Chem. 54 (2018) 274–282. Crossref
(8) M.M. Lachowska, A.K. Mrzyk, H. Moroz, A.I. Lachowski. Methanol synthesis from carbon dioxide and hydrogen over : CuO/ZnO/ZrO2 promoted catalysts. CHEMIK 68 (2014) 65–68.
(9) B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S.C.E. Tsang, Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. J. Catal. 359 (2018) 17–26. Crossref
(10) U.J. Etim, Y. Song, Z. Zhong. Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol As a Renewable Energy Storage Media. Front. Energy Res. 8 (2020) 545431. Crossref
(11) Y.H. Wang, W.G. Gao, H. Wang, Y.E. Zheng, W. Na, K.Z. Li. Structure–activity relationships of Cu–ZrO2 catalysts for CO2 hydrogenation to methanol: interaction effects and reaction mechanism. RSC Adv. 7 (2017) 8709–8717. Crossref
(12) C. Huang, S. Chen, X. Fei, D. Liu, Y. Zhang. Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System. Catalysts 5 (2015) 1846–1861. Crossref
(13) S. Tagiyeva, S.N. Osmanova, A.I. Rustamova, D.B. Tagiyev, E.H. Ismailov. Methanation of Carbon Dioxide on Co-Containing Aluminosilicate Catalysts. Theor. Exp. Chem. 59 (2024) 434–441. Crossref
(14) R.-S. Liu, M. Iwamoto, J.H. Lunsford. Partial oxidation of methane by nitrous oxide over molybdenum oxide supported on silica. J. Chem. Soc., Chem. Commun. 1982, 78–79. Crossref
(15) H.F. Liu, R.S. Liu, K.Y. Liew, R.E. Johnson, J.H. Lunsford. Partial oxidation of methane by nitrous oxide over molybdenum on silica. J. Am. Chem. Soc. 106 (1987) 4117–4121. Crossref
(16) X. Fan, K. Wang, X. He, S. Li, M. Yu, X. Liang, Pd-modified CuO-ZnO-Al2O3 catalysts via mixed-phases-containing precursor for methanol synthesis from CO2 hydrogenation under mild conditions. Carbon Resour. Convers. 7 (2024) 100184. Crossref
(17) Z. Zhang, X. Chen, J. Kang, et al. The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nat. Commun. 12 (2021) 4331. Crossref
(18) M. Sadeghinia, M. Rezaei, A. Nemati Kharat, M. Namayandeh Jorabchi, B. Nematollahi, F. Zareiekordshouli, Effect of In2O3 on the structural properties and catalytic performance of the CuO/ZnO/Al2O3 catalyst in CO2 and CO hydrogenation to methanol. Mol. Catal. 484 (2020) 110776. Crossref
(19) M. Cortés-Reyes, I. Azaoum, S. Molina-Ramírez, C. Herrera, M. Ángeles Larrubia, L.J. Alemany. NiGa Unsupported Catalyst for CO2 Hydrogenation at Atmospheric Pressure. Tentative Reaction Pathways. Ind. Eng. Chem. Res. 60 (2021) 18891−18899. Crossref
(20) Y. Wang, Lea R. Winter, J.G. Chen, B. Yan. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: from electronic properties to product selectivity. Green Chem. 23 (2021) 249–267. Crossref
(21) O.A. Bulavchenko, S.V. Cherepanova, S.V. Tsybulya, "In situ XRD investigation of Co3O4 reduction". Eleventh European Powder Diffraction Conference: Warsaw, September 19-22, 2008, München: Oldenbourg Wissenschaftsverlag, 2009, pp. 329–334. Crossref
(22) M. Haneda, M. Todo, Y. Nakamura, M. Hattori. Effect of Pd dispersion on the catalytic activity of Pd/Al2O3 for C3H6 and CO oxidation. Catal. Today 281 (2017) 447–453. Crossref
(23) C. Oliva, L. Forni, L. Formaro. Effect of Thermal Treatment on the EPR Spectrum and on Catalytic Properties of Pure Co3O4. Appl. Spectrosc. 50 (1996) 1395–1398. Crossref
(24) N. Guskos, J. Typek, M. Maryniak, G. Żołnierkiewicz, M. Podsiadły, W. Arabczyk, Z. Lendzion-Bieluń, U. Narkiewicz, Effect of calcination and structural additives on the EPR spectra of nanocrystalline cobalt oxides. Materials Science-Poland 24 (2006) 1095–1102.
(25) X. Wang, W. Tian, T. Zhai, et al. Cobalt(ii,iii) oxide hollow structures: fabrication, properties and applications. J. Mater. Chem. 22 (2012) 23310–23326. Crossref
(26) K. Chalapat, J.V.I. Timonen, M. Huuppola, et al. Ferromagnetic resonance in epsilon-Co magnetic composites. Nanotechnology 25 (2014) 485707. Crossref
(27) F. Moro, S.Vi Yu Tang, F. Tuna, E. Lester. Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method. J. Magn. Magn. Mater. 348 (2013) 1–7. Crossref
(28) X. He, X. Song, W. Qiao, Z. Li, X. Zhang, S. Yan, W. Zhong, Y. Du. Phase- and Size-Dependent Optical and Magnetic Properties of CoO Nanoparticles. J. Phys. Chem. 119 (2015) 9550–9559. Crossref
(29) N. Fontaíña-Troitiño, S. Liébana-Viñas, B. Rodríguez-González, Zi-An Li, M. Spasova, M. Farle, V. Salgueiriño. Room-Temperature Ferromagnetism in Antiferromagnetic Cobalt Oxide Nanooctahedra. Nano Lett. 14 (2014) 640–647. Crossref
(30) A.A. Vedyagin, Y.V. Shubin, R.M. Kenzhin, et al. Prospect of Using Nanoalloys of Partly Miscible Rhodium and Palladium in Three-Way Catalysis. Top. Catal. 62 (2019) 305–314. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sh.F. Tagiyeva, S.N. Osmanova, A.I. Rustamova, F.K. Pashayeva, R.M. Muradkhanov, A.N. Mammadov, E.H. Ismailov

This work is licensed under a Creative Commons Attribution 4.0 International License.