Two-Stage Conversion of Carbon Dioxide to Methanol on Co-Pd-Containing Catalysts Based on Aluminosilicates at Atmospheric Pressure
DOI:
https://doi.org/10.18321/ectj1654Keywords:
Carbon dioxide conversion, Pd-Co-containing catalysts, Methane, MethanolAbstract
A two-stage process for CO2 conversion into methanol under continuous flow and atmospheric pressure conditions is proposed, using a bimetallic cobalt–palladium catalyst supported on a Siral-type aluminosilicate (Co-Pd/Siral). In the first stage, CO2 is hydrogenated to methane at 473–523 K according to the reaction: CO2 + 4H2 → CH4 + 2H2O, carried out in the first reactor. After removing the water formed, the second stage involves the conversion of methane, unreacted CO2, and H2 into methanol in a second reactor at 573 K. The introduction of 0.5 wt.% palladium into the 10 wt.% Co/Siral catalyst was shown to promote methanol formation, with a maximum yield of 3.3% observed at 573 K. It is suggested that the catalytically active sites for CO2 hydrogenation to methane are nanosized Co, CoOx particles, while methanol is formed through the oxidation of methane over nanosized PdO particles, following the reaction: PdO + CH4 → Pd + CH3OH. Methane is oxidized by PdO, and the Pd–PdO redox cycle is sustained by carbon dioxide through the reaction: Pd + CO2 → PdO + CO. In addition, cobalt oxides (CoOx) contribute to CO2 activation, significantly facilitating the catalytic cycle.
References
(1) M.A. Shah, A.L. Shibiru, V. Kumar, V.C. Srivastava, Carbon dioxide conversion to value-added products and fuels: opportunities and challenges: a critical review. Int. J. Green Energy, 2023. Crossref DOI: https://doi.org/10.1080/15435075.2023.2281330
(2) E.C. Ra, K.Y. Kim, E.H. Kim, H. Lee, K. An, J.S. Lee, Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catal. 10 (2020) 11318–11345. Crossref DOI: https://doi.org/10.1021/acscatal.0c02930
(3) G. Yergaziyeva, E. Kutelia, K. Dossumov, D. Gventsadze, N. Jalabadze, T. Dzigrashvili, L. Nadaraia, O. Tsurtsumia, M.M. Anissova, M.M. Mambetova, B. Eristavi, N. Khudaibergenov, N. Effect of Lanthanum Oxide on the Activity Ni-Co/Diatomite Catalysts in Dry Reforming of Methane. Eurasian Chem.-Technol. J. 25 (2023) 21–32. Crossref DOI: https://doi.org/10.18321/ectj1492
(4). S.O. Soloviev, Prospects for the Development of Nanocomposite Catalysts for the Oxidative Conversion of C1-C4 Alkanes with Carbon Dioxide to Produce Hydrogen/Synthesis Gas and Organic Compounds: A Review. Theor. Exp. Chem. 59 (2023) 307–323. Crossref DOI: https://doi.org/10.1007/s11237-024-09790-z
(5) Sh.F. Taghiyeva, E.H. Ismailov. Heterogeneous catalytic hydrogenation of carbon dioxide into hydrocarbons: achievements and prospects. Сhemical Problems 18 (2020) 485–500. Crossref DOI: https://doi.org/10.32737/2221-8688-2020-4-485-500
(6) R-P. Ye, J. Ding, W. Gong, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10 (2019) 5698. Crossref DOI: https://doi.org/10.1038/s41467-019-13638-9
(7) S.F. Tagiyeva, N.M. Aliyeva, E.H. Ismailov, et al. Structure and Magnetic Properties of Fe,Ni(Zr)/Al Oxide Catalysts Under the Conditions of Methanation of Carbon Dioxide. Theor. Exp. Chem. 54 (2018) 274–282. Crossref DOI: https://doi.org/10.1007/s11237-018-9573-7
(8) M.M. Lachowska, A.K. Mrzyk, H. Moroz, A.I. Lachowski. Methanol synthesis from carbon dioxide and hydrogen over : CuO/ZnO/ZrO2 promoted catalysts. CHEMIK 68 (2014) 65-68.
(9) B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S.C.E. Tsang, Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. J. Catal. 359 (2018) 17–26. Crossref DOI: https://doi.org/10.1016/j.jcat.2017.12.029
(10) U.J. Etim, Y. Song, Z. Zhong. Improving the Cu/ZnO-Based Catalysts for Carbon Dioxide Hydrogenation to Methanol, and the Use of Methanol As a Renewable Energy Storage Media. Front. Energy Res. 8 (2020) 545431. Crossref DOI: https://doi.org/10.3389/fenrg.2020.545431
(11) Y.H. Wang, W.G. Gao, H. Wang, Y.E. Zheng, W. Na, K.Z. Li. Structure–activity relationships of Cu–ZrO2 catalysts for CO2 hydrogenation to methanol: interaction effects and reaction mechanism. RSC Adv. 7 (2017) 8709–8717. Crossref DOI: https://doi.org/10.1039/C6RA28305E
(12) C. Huang, S. Chen, X. Fei, D. Liu, Y. Zhang. Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System. Catalysts 5 (2015) 1846–1861. Crossref DOI: https://doi.org/10.3390/catal5041846
(13) S. Tagiyeva, S.N. Osmanova, A.I. Rustamova, D.B. Tagiyev, E.H. Ismailov. Methanation of Carbon Dioxide on Co-Containing Aluminosilicate Catalysts. Theor. Exp. Chem. 59 (2024) 434–441. Crossref DOI: https://doi.org/10.1007/s11237-024-09803-x
(14) R.-S. Liu, M. Iwamoto, J.H. Lunsford. Partial oxidation of methane by nitrous oxide over molybdenum oxide supported on silica. J. Chem. Soc., Chem. Commun. 1982, 78–79. Crossref DOI: https://doi.org/10.1039/c39820000078
(15) H.F. Liu, R.S. Liu, K.Y. Liew, R.E. Johnson, J.H. Lunsford. Partial oxidation of methane by nitrous oxide over molybdenum on silica. J. Am. Chem. Soc. 106 (1987) 4117–4121. Crossref DOI: https://doi.org/10.1021/ja00327a009
(16) X. Fan, K. Wang, X. He, S. Li, M. Yu, X. Liang, Pd-modified CuO-ZnO-Al2O3 catalysts via mixed-phases-containing precursor for methanol synthesis from CO2 hydrogenation under mild conditions. Carbon Resour. Convers. 7 (2024) 100184. Crossref DOI: https://doi.org/10.1016/j.crcon.2023.05.003
(17) Z. Zhang, X. Chen, J. Kang, et al. The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nat. Commun. 12 (2021) 4331. Crossref DOI: https://doi.org/10.1038/s41467-021-24621-8
(18) M. Sadeghinia, M. Rezaei, A. Nemati Kharat, M. Namayandeh Jorabchi, B. Nematollahi, F. Zareiekordshouli, Effect of In2O3 on the structural properties and catalytic performance of the CuO/ZnO/Al2O3 catalyst in CO2 and CO hydrogenation to methanol. Mol. Catal. 484 (2020), 110776. Crossref DOI: https://doi.org/10.1016/j.mcat.2020.110776
(19) M. Cortés-Reyes, I. Azaoum, S. Molina-Ramírez, C. Herrera, M. Ángeles Larrubia, L.J. Alemany. NiGa Unsupported Catalyst for CO2 Hydrogenation at Atmospheric Pressure. Tentative Reaction Pathways. Ind. Eng. Chem. Res. 60 (2021) 18891−18899. DOI: 10.1021/acs.iecr.1c03115 / H. Bahruji, M. Bowker, G. Hutchings, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal. 343 (2016) 133-146. DOI: 10.1016/j.jcat.2016.03.017 DOI: https://doi.org/10.1021/acs.iecr.1c03115
(20) Yaning Wang, Lea R. Winter, Jingguang G. Chen, Binhang Yan. CO2 Hydrogenation over Heterogeneous Catalysts at Atmospheric Pressure: From Electronic Properties to Product Selectivity// Green Chemistry, 2020, GC-PER-10-2020-003506.R1, pp.1-48Liang B., Ma J., Su X. et al. // Ind. Eng. Chem. Res. – 2019. – 58. N. 21. – P. 9030-9037. https://doi.org/10.1021/acs.iecr.9b01546. DOI: https://doi.org/10.1021/acs.iecr.9b01546
(21) O.A. Bulavchenko, S.V. Cherepanova, S.V. Tsybulya, "In situ XRD investigation of Co3O4 reduction". Eleventh European Powder Diffraction Conference: Warsaw, September 19-22, 2008, München: Oldenbourg Wissenschaftsverlag, 2009, pp. 329-334. Crossref DOI: https://doi.org/10.1524/9783486992588-052
(22) M. Haneda, M. Todo, Y. Nakamura, M. Hattori. Effect of Pd dispersion on the catalytic activity of Pd/Al2O3 for C3H6 and CO oxidation. Catal. Today 281 (2017) 447–453. Crossref DOI: https://doi.org/10.1016/j.cattod.2016.05.025
(23) C. Oliva, L. Forni, L. Formaro. Effect of Thermal Treatment on the EPR Spectrum and on Catalytic Properties of Pure Co3O4. Appl. Spectrosc. 50 (1996) 1395–1398. Crossref DOI: https://doi.org/10.1366/0003702963904836
(24) Guskos N., Typek J., Maryniak M. et al. // Materials Science-Poland. – 2006. – 24, N 4. – P. 1095-1102.
(25) X. Wang, W. Tian, T. Zhai, et al. Cobalt(ii,iii) oxide hollow structures: fabrication, properties and applications. J. Mater. Chem. 22 (2012) 23310–23326. Crossref DOI: https://doi.org/10.1039/c2jm33940d
(26) K. Chalapat, J.V.I. Timonen, M. Huuppola, et al. Ferromagnetic resonance in epsilon-Co magnetic composites. Nanotechnology 25 (2014) 48. 485707. Crossref DOI: https://doi.org/10.1088/0957-4484/25/48/485707
(27) F. Moro, S.Vi Yu Tang, F. Tuna, E. Lester. Magnetic properties of cobalt oxide nanoparticles synthesised by a continuous hydrothermal method. J. Magn. Magn. Mater. 348 (2013) 1–7. Crossref DOI: https://doi.org/10.1016/j.jmmm.2013.07.064
(28) X. He, X. Song, W. Qiao, Z. Li, X. Zhang, S. Yan, W. Zhong, Y. Du. Phase- and Size-Dependent Optical and Magnetic Properties of CoO Nanoparticles. J. Phys. Chem. 119 (2015) 9550–9559. Crossref DOI: https://doi.org/10.1021/jp5127909
(29) N. Fontaíña-Troitiño, S. Liébana-Viñas, B. Rodríguez-González, Zi-An Li, M. Spasova, M. Farle, V. Salgueiriño. Room-Temperature Ferromagnetism in Antiferromagnetic Cobalt Oxide Nanooctahedra. Nano Lett. 14 (2014) 640–647. Crossref DOI: https://doi.org/10.1021/nl4038533
(30) A.A. Vedyagin, Y.V. Shubin, R.M. Kenzhin, et al. Prospect of Using Nanoalloys of Partly Miscible Rhodium and Palladium in Three-Way Catalysis. Top. Catal. 62 (2019) 305–314. Crossref DOI: https://doi.org/10.1007/s11244-018-1093-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Sh.F. Tagiyeva, S.N. Osmanova, A.I. Rustamova, F.K. Pashayeva, R.M. Muradkhanov, A.N. Mammadov, E.H. Ismailov

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.