Promising Directions in Chemical Processing of Methane from Coal Industry. Part 4. Long-term Stability Test

Authors

  • Е.V. Matus Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia; Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 5, pr. Akademika Lavrentieva, Novosibirsk, Russia
  • O.V. Tailakov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia
  • O.B. Sukhova Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 5, pr. Akademika Lavrentieva, Novosibirsk, Russia
  • A.V. Salnikov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia; Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 5, pr. Akademika Lavrentieva, Novosibirsk, Russia
  • O.A. Stonkus Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 5, pr. Akademika Lavrentieva, Novosibirsk, Russia
  • M.A. Kerzhentsev Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia; Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 5, pr. Akademika Lavrentieva, Novosibirsk, Russia
  • S.R. Khairulin Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia; Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 5, pr. Akademika Lavrentieva, Novosibirsk, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry, Siberian Branch, RAS, 18, pr. Sovetskiy, Kemerovo, Russia; Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 5, pr. Akademika Lavrentieva, Novosibirsk, Russia

DOI:

https://doi.org/10.18321/ectj1643

Keywords:

Сoal mine methane , Tri-reforming of methane , Long-term stability test

Abstract

For the processing of coal mine methane into hydrogen-containing gas, a catalytic process of methane tri-reforming was studied under long-term testing conditions (800 ᵒC, 100 h). The tests were carried out using the actual composition of the methane-containing mixture recovered by mine drainage systems of the Raspadskaya mine (Kuzbass, Russia). Gas chromatographic analysis of coal mine gas showed that it contains the following components with an average concentration, vol.%: CH4 – 40.18, N2 – 36.30, H2O – 12.90, O2 – 9.77, CO2 – 0.88, C2H6 – 0.25 and C3H8 – 0.04. It was found that the average O/C molar ratio was 0.87, so CO2 addition to the methane-containing mixture was done to maintain the O/C ratio > 1.1 to ensure stable operation (without significant coke formation) during the catalytic process. Long-term catalytic tests have shown high parameters of the methane tri-reforming process, which were stable over the time of operation. At a temperature of 800 ᵒC, after 100 h of process using the Ce0.2Ni0.8O1.2/Al2O3 catalyst, the hydrogen yield was 85% at a methane conversion of 80%. A comparative analysis of the properties of fresh and spent Ce0.2Ni0.8O1.2/Al2O3 catalyst was performed using low-temperature nitrogen adsorption, powder X-ray diffraction, electron microscopy and thermal analysis. It was established that the mesoporous texture of the catalyst was retained, but the dispersion of the active component decreased. The Ce0.2Ni0.8O1.2/Al2O3 catalyst is resistant to thermal sintering and coking, which ensures no deactivation. The use of tri-reforming technology for the utilization of coal mine methane is a step towards “green” coal mining, ensuring sustainable development of society.

References

(1) Coal 2023. Analysis and forecast to 2026, INTERNATIONAL ENERGY AGENCY. URL

(2) Number of operational coal power plants worldwide from 2021 to 2024. URL

(3) H. Ritchie, P. Rosado, Electricity Mix, (2024). URL

(4) M. Evans, Albert and Raja Venkat Ramani, "coal mining". Encyclopedia Britannica. URL

(5) Global coal miners and the urgency of a just transition. Global Energy Monitor. URL

(6) Top 10 most dangerous jobs in the United States in 2024. Industrial Safety and Hygiene News. URL

(7) I.I. Mokhnachuk, T.E. Piktushanskaya, M.S. Bryleva, K.V. Betts, Russ. J. Occup. Heal. Ind. Ecol. 63 (2023) 88–93. (in Russ.) Crossref

(8) Tabas coal mine explosion. URL

(9) D. Strąpoć, F.W. Picardal, C. Turich, et al., Appl. Environ. Microbiol. 74 (2008) 2424–2432. Crossref

(10) B. Saha, A.S. Patra, A.K. Mukherjee, J. Mol. Graph. Model. 106 (2021) 107868. Crossref

(11) United Nations Economic Commission for Europe, Best Practice Guidance for Effective Methane Drainage and Use in Coal Mines. ECE ENERGY SERIES No. 47, Second edition, 2016. URL

(12) N. Kholod, M. Evans, R.C. Pilcher, et al., J. Clean. Prod. 256 (2020) 120489. Crossref

(13) O.V. Tailakov, MIAB. Mining Inf. Anal. Bull. [Gornyj informacionno-analiticheskij bjulleten'] 11 (2024) 88–100. (in Russ.). Crossref

(14) Order of the Federal Service for Environmental, Technological and Nuclear Supervision dated December 8, 2020 No. 506 “On approval of Federal norms and regulations in the field of industrial safety “Instructions for aerological safety of coal mines”. (in Russ.). URL

(15) Global Methane Initiative (GMI). International Coal Mine Methane Project List. URL

(16) J. Yin, S. Su, J.S. Bae, et al., Energy Fuel. 34 (2020) 655–664. Crossref

(17) Е.V. Matus, I.Z. Ismagilov, E.S. Mikhaylova, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 24 (2022) 69–91. Crossref

(18) X. Wang, K. Wei, S. Yan, et al., Appl. Catal. B Environ. 268 (2020) 118413. Crossref

(19) K. Wei, X. Wang, H. Zhu, et al., J. Power Sources 506 (2021) 230208. Crossref

(20) H. Zhu, H. Dai, Z. Song, et al., Int. J. Hydrogen Energy 46 (2021) 31439–31451. Crossref

(21) I.V. Sedov, V.S. Arutyunov, M.V. Tsvetkov, et al., Eurasian Chem.-Technol. J. 24 (2022) 157–163. Crossref

(22) E.V. Matus, Z.R. Ismagilov, Eurasian Chem.-Technol. J. 24 (2022) 203–214. Crossref

(23) E.V. Matus, M.A. Kerzhentsev, A.P. Nikitin, et al., Eurasian Chem.-Technol. J. 25 (2023) 103–113. Crossref

(24) Е.V. Matus, M.A. Kerzhentsev, A.P. Nikitin, et al., Eurasian Chem.-Technol. J. 26 (2024) 3–14. Crossref

(25) E.V. Matus, E.N. Kovalenko, A.V. Kapishnikov, et al., J. Struct. Chem. 65 (2024) 1692–1706. Crossref

(26) E. Matus, O. Sukhova, M. Kerzhentsev, et al., Catalysts 12 (2022) 1493. Crossref

(27) A.V. Salnikov, E.V. Matus, M.A. Kerzhentsev, S.R. Khairulin, Chem. Sustain. Dev. 32 (2024) 384–392. Crossref

(28) K.S.W. Sing, Pure Appl. Chem. 57 (1985) 603–619. Crossref

(29) E. Ruckenstein, Y.H. Hu, Appl. Catal. A Gen. 133 (1995) 149–161. Crossref

(30) Y.H. Hu, E. Ruckenstein, Science 368 (2020) 5459. Crossref

(31) A. Pandey, P. Biswas, K.P. Kishore, A.K. Dalai, Ind. Eng. Chem. Res. 63 (2024) 1000–1012. Crossref

(32) T.S. Phan, D.P. Minh, ChemCatChem 16 (2024) e202400192. Crossref

(33) X.H. Pham, U.P.M. Ashik, J.I. Hayashi, et al., Appl. Catal. A Gen. 623 (2021) 118286. Crossref

(34) D.P. Minh, X.H. Pham, T.J. Siang, D.V.N. Vo, Appl. Catal. A Gen. 621 (2021) 118202. Crossref

(35) K. Świrk, T. Grzybek, M. Motak, E3S Web Conf. 14 (2017) 1–10. Crossref

(36) D.M. Walker, S.L. Pettit, J.T. Wolan, J.N. Kuhn, Appl. Catal. A Gen. 445–446 (2012) 61–68. Crossref

(37) K. Świrk Da Costa, J. Grams, M. Motak, et al., J. CO2 Util. 42 (2022) 101317. Crossref

Downloads

Published

2024-12-25

How to Cite

Matus Е., Tailakov, O., Sukhova, O., Salnikov, A., Stonkus, O., Kerzhentsev, M., … Ismagilov, Z. (2024). Promising Directions in Chemical Processing of Methane from Coal Industry. Part 4. Long-term Stability Test. Eurasian Chemico-Technological Journal, 26(4), 193–202. https://doi.org/10.18321/ectj1643

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 3