Synthesis and Physicochemical Properties of Hydrazides of Malonic Acid with Different Substitutes

Authors

  • T.V. Ghochikyan Yerevan State University, 1/1 A. Manoukyan Str., Yerevan, 0025, Armenia
  • A.I. Martiryan Yerevan State University, 1/1 A. Manoukyan Str., Yerevan, 0025, Armenia
  • G.A. Shahinyan Yerevan State University, 1/1 A. Manoukyan Str., Yerevan, 0025, Armenia
  • M.A. Samvelyan Yerevan State University, 1/1 A. Manoukyan Str., Yerevan, 0025, Armenia
  • A.S. Galstyan Yerevan State University, 1/1 A. Manoukyan Str., Yerevan, 0025, Armenia
  • H․R. Sargsyan Yerevan State University, 1/1 A. Manoukyan Str., Yerevan, 0025, Armenia
  • H․H. Ghazoyan Yerevan State University, 1/1 A. Manoukyan Str., Yerevan, 0025, Armenia

DOI:

https://doi.org/10.18321/ectj1644

Keywords:

Intramolecular cyclization, Hydrazide hydrates, Butanolide, Antioxidant activity

Abstract

Shown that the rout of reaction of 2-ethoxycarbonyl-4,4-disubstituted-4-butanolide with hydrazine hydrate at soft conditions (45─50 ᵒC) strongly depends on the substituents on position 2 of butanolide cycle. The effect of substituents on the mechanism of above-mentioned reaction and yields of products has been investigated. Obvious that, dihydrazides of substituted malonic acid are produced when R3=H, whereas in the case of alkyl substituted butanolides intramolecular cyclization of intermediate occurs at the same conditions and as a result 4,4-disubstituted pyrazolidine-3,5-diones are produced. We studied physicochemical properties including antioxidant activity of the prepared compounds. The UV-Vis absorption spectroscopic studies reveal the effect of substituents on both absorption wavelength and molar absorption coefficient. From the spectra the transition type was determined. From dynamic light scattering measurements the mean hydrodynamic diameters of synthesized molecules is also determined. The antioxidant activity of malonic acid derivatives is studied using competitive reaction between hydroxyl radicals and free radical target p-nitroso-N,N-dimethylaniline. The rate constant between derivatives of malonic acid and hydroxyl radicals was determined and the results were compared with those of vitamin C.

References

(1) T.V. Ghochikyan, A.S. Galstyan. Dihydrazides of 2-(2-amino(or methyl)thiazolyl-4-yl)-3-isopentyl glutaric acid, with hypotensive activity. Patent N 3442, AM20210011, Republic of Armenia, 02.02.2021 (in Russ.).

(2)T.V. Ghochikyan, M.A. Samvelyan, A.S. Galstyan.Methyl esters of 2-(2-aminothiazol4-yl)-4-ethoxycarbonyl-4-alkylbutanoic acids with anti-inflammatory and psychotropic properties. Patent N 742, AM20220018Y, Republic of Armenia, 03.03.2022 (in Russ.).

(3) T.V. Ghochikyan, M.A. Samvelyan. Derivatives of 4-butanolide with antitumor properties. Patent N 3444, AM20210010, Republic of Armenia, 02.02.2021 (in Russ.).

(4) Tariel V. Ghochikyan, Melanya A. Samvelyan. Sodium salts of substituted amides of 2-alkyl-3-methyl-glutaric acid with antimineralocorticoid properties. Patent N 3432, AM 20200049, Republic of Armenia, 16.02.2021 (in Russ.).

(5) Y.S. Nam, J.Y. Park, S.-H. Han & I.-S. Chang, Biotechnol. Lett. 24 (2002) 2093─2098. Crossref DOI: https://doi.org/10.1023/A:1021373731787

(6) T. Akagi, X. Wang, T. Uto, et al., Biomaterials 28 (2007) 3427─3436. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2007.04.023

(7) Sh.A. Markarian, H.R. Sargsyan, G.S. Grigoryan, et al., J. Mol. Liq. 369 (2023) 120960. Crossref DOI: https://doi.org/10.1016/j.molliq.2022.120960

(8) M. Hu, Sh. Chujo, H. Nishikawa, et al., J. Nanoparticle Res. 6 (2004) 479. Crossref DOI: https://doi.org/10.1007/s11051-004-2163-8

(9) C. Pascal, J.L. Pascal, F. Favier, et al., Chem. Mater. 11 (1999) 141─147. Crossref DOI: https://doi.org/10.1021/cm980742f

(10) F. Zhang, S.-W. Chan, J.E. Spanier, et al., Appl. Phys. Lett. 80 (2002) 127. Crossref DOI: https://doi.org/10.1063/1.1430502

(11) B.J. Berne, R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, John Wiley & Sons, Inc. (2000). ISBN 0-486-41155-9

(12) C. Bellmann, A. Caspari, Fr. Babick, M. Stintz, Ch. Moitzi, Dynamic and Electrophoretic Light Scattering: Guidelines for Particle-Size Analysis and Zeta-Potential Determination, 2019. ISBN 3200067020, 9783200067028.

(13)L.K. Shpigun, M.A. Arharova, K.Z. Brainina, A.V. Ivanova, Anal. Chim. Acta 573─574 (2006) 419─426. Crossref DOI: https://doi.org/10.1016/j.aca.2006.03.094

(14) R. Salazar, M. Pozos, P. Cordero, et al., Pharm. Biol. 46 (2008) 166─170. Crossref DOI: https://doi.org/10.1080/13880200701498952

(15) R.L. Prior, G. Cao, Free Radic. Biol. Med. 27 (1999) 1173─1181. Crossref DOI: https://doi.org/10.1016/S0891-5849(99)00203-8

(16) N. Francenia Santos-Sánchez, R. Salas-Coronado, C. Villanueva-Cañongo, B. Hernández-Carlos (2019). ‘Antioxidant Compounds and Their Antioxidant Mechanism’. Antioxidants. IntechOpen. Crossref DOI: https://doi.org/10.5772/intechopen.85270

(17) B. Li, D. A. Pratt, Free Radic. Biol. Med. 82 (2015) 187─202. Crossref DOI: https://doi.org/10.1016/j.freeradbiomed.2015.01.020

(18) K.U. Ingold, D.A. Pratt, Chem. Rev. 114 (2014) 9022─9046. Crossref DOI: https://doi.org/10.1021/cr500226n

(19) X. Colin, Front. Chem. 9 (2022). DOI:10.3389/fchem.2021.797335. hal-03706766 DOI: https://doi.org/10.3389/fchem.2021.797335

(20) K.U. Ingold, Chem. Rev 61 (1961) 563. Crossref DOI: https://doi.org/10.1021/cr60214a002

(21) E.M. Nolan, J. Jaworski, K. Okamoto, et al., J. Am. Chem. Soc. 127 (2005) 16812─16823. Crossref DOI: https://doi.org/10.1021/ja052184t

(22) M.J. Rose, N.L. Fry, R. Marlow, et al., J. Am. Chem. Soc. 130 (2008) 8834─8846. Crossref DOI: https://doi.org/10.1021/ja801823f

(23) S. Cretton, L. Breant, L. Pourrez, et al., J. Nat. Prod. 77 (2014) 2304-2311. Crossref DOI: https://doi.org/10.1021/np5006554

(24) L.M. Miller, S.C. Mayer, D.M. Berger, et al., Bioorg. Med. Chem. Lett. 19 (2009) 62─66. Crossref DOI: https://doi.org/10.1016/j.bmcl.2008.11.037

(25) Th. Curtius, H. Sauеrberg, Journal für Praktische Chemie (Deutsch) 125 (1930) 139─151. Crossref DOI: https://doi.org/10.1002/prac.19301250108

(26) V.S. Arutyunyan, T.V. Kochikyan, N.S. Egiazaryan, A.A. Avetisyan, Improved process for the preparation of 2-carbethoxy-4-alkoxymethylbutanolides, Armenian Chemical Journal [Armjanskij himicheskij zhurnal] 47 (1994) 91─93.URL

(27) V.S. Arutyunyan, T.V. Kochikyan, E.V. Arutyunyan and A.A. Avetisyan. Ciclization of Alkenilmalonig Esters. Scientific notes of Yerevan State University [Uchenye zapiski Erevanskogo gosudarstvennogo universiteta] 1 (2002) 73─76 (in Russ.).

(28) A.S. Galstyan, A.I. Martiryan, K.R. Grigoryan, et al., Molecules 23 N11 (2018) 2991. Crossref DOI: https://doi.org/10.3390/molecules23112991

(29) A.I. Martiryan, G.A. Shahinyan, V.V. Vardapetyan, Colloid Interface Sci. Commun. 50 (2022) 100653. Crossref DOI: https://doi.org/10.1016/j.colcom.2022.100653

(30) B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross, J. Phys. Chem. Ref. Data 14 (1985) 1041–1100. DOI: https://doi.org/10.1063/1.555739

(31) M.E. Simonsen, J. Muff, L.R. Bennedsen, et al., J. Photochem. Photobiol. A Chem. 216 (2010) 244─249. Crossref DOI: https://doi.org/10.1016/j.jphotochem.2010.07.008

Downloads

Additional Files

Published

25-12-2024

How to Cite

Ghochikyan, T., Martiryan, A., Shahinyan, G., Samvelyan, M., Galstyan, A., Sargsyan, H., & Ghazoyan, H. (2024). Synthesis and Physicochemical Properties of Hydrazides of Malonic Acid with Different Substitutes. Eurasian Chemico-Technological Journal, 26(4), 203–209. https://doi.org/10.18321/ectj1644

Issue

Section

Articles