Nitric Oxide Pathways in Surface-Flame Radiant Burners

Authors

  • M. D. Rumminger Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA
  • R. W. Dibble Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, USA

DOI:

https://doi.org/10.18321/ectj179

Abstract

Nitrogen oxide (NOx) formation in surface-flame burners is studied. Surface-flame burners are typically made of metal fibers, ceramic fibers, or ceramic foam and provide radiant flux with low pollutant emissions. A one-dimensional model represents combustion on and within the porous medium using multistep chemistry, separate gas and energy equations, and a radiatively participating porous medium. We describe experimental measurements of NOx profiles above a surface-flame burner and compare them to model predictions. The model predicts NOx concentration with reasonable success. Deviations between model and experiment are primarily the result of heat loss in the experiment that is not considered in the model. Reaction rate analysis is performed to identify the chemical kinetic source of NO in the flame. Zeldovich NO is significant only at the highest firing rate studied (600 kW/m2, ϕ = 0.9), where it is responsible for 50-60% of the total NO. At the lower firing rates (200 and 300 kW/m2, ϕ = 0.9), where total NO is low, nearly all of the NO is formed in the flame front. Zeldovich NO accounts for 20-30% percent of the total NO, the Fenimore pathway accounts for less than 10% of the NO, and 50-75% percent of the NO is formed through the NNH, N2O and other paths. Sensitivity analysis shows that NO production in the flame front is most sensitive to NNH+O = NH+NO, with CH+N2 = HCN+N having the second highest sensitivity coefficient. At the lower firing rates NO emission is insensitive to porous medium properties, while at the high firing rate NO emission is slightly sensitive to porous medium properties.

References

[1]. J. Goovaerts, K. Ratnani, and B. Hendry, Pulp and Paper Canada 92 (1991) 24–27.

[2]. P. Mattsson, J. Pelkonen, A. Riikonen, and N. Oy, Paperi ja Puu–Paper and Timber 72 (1990) 347–349.

[3]. S. Singh, M. Ziolkowski, J. Sultzbaugh, and R. Viskanta, in Fossil Fuel Combustion (R.Ruiz, Ed.), 1992, ASME PD-33, p. 111.

[4]. F. Andersen, Prog. Energy Comb. Sci., 18 (1992) 1–12.

[5]. Y.-K. Chen, R.D. Matthews, and J.R. Howell, in Radiation, Phase Change Heat Transfer and Thermal Systems (Y. Jaluria et al., Ed.), 1987, ASME HTD- 81, p. 35.

[6]. S.B. Sathe, R.E. Peck, and T.W. Tong, Int. J. Heat Mass Transfer 33 (1990) 1331–1338.

[7]. P.H. Bouma, R.L.G.M. Eggels, L.M.T. Somers, L.P.H. de Goey, J.K. Nieuwenhuizen, and A. Van Der Drift, Combust. Sci. Technol. 108 (1994) 193-203.

[8]. M. Kulkarni, Ph.D. dissertation, Arizona State University, 1996.

[9]. P.-F. Hsu, W.D. Evans, and J.R. Howell, Combust. Sci. Technol. 90 (1993) 149-172.

[10]. J.D. Sullivan, and R.M. Kendall, International Gas Research Conference, Orlando, Florida, 1992.

[11]. A. Williams, R. Woolley, and M. Lawes, Combust. Flame 89 (1992) 157–166.

[12]. A.V. Mokhov, and H.B. Levinsky, 26th Symp. (Int.) Combust., The Combustion Institute, Pittsburgh, 1996, pp. 2147–2154.

[13]. J.A. Miller, and C. T. Bowman, Prog. Energ. Combus. Sci. 15 (1989) 287–338.

[14]. R.J. Kee, J.F. Grcar, M.D. Smooke, and J.A. Miller, (1985), A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames, Sandia National Laboratory, SAND85-8240.

[15]. M.D. Rumminger, N.H. Heberle, R.W. Dibble, and D.R. Crosley, 26th Symp. (Int.) Combust., The Combustion Institute, Pittsburgh, 1996, pp. 1755–1762.

[16]. M.D. Rumminger, Ph.D. dissertation, University of California, Berkeley, 1996.

[17]. R.J. Kee, F.M. Rupley, and J.A. Miller, (1989), CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, Sandia National Laboratory, SAND89-8009B.

[18]. R.J. Kee, G. Dixon-Lewis, G. Warnatz, M.E. Coltrin, and J.A. Miller, (1986), A Fortran Computer Package for the Evaluation of Gas-Phase, Multicomponent Transport Properties, Sandia National Laboratory, SAND86-8246.

[19]. J.F. Grcar, (1992), The Twopnt Program for Boundary Value Problems, Sandia National Laboratory, SAND91-8230.

[20]. M. Golombok, A. Prothero, L.C. Shirvill, and L.M. Small, Combust. Sci. Technol. 77 (1991) 203–223.

[21]. R. Mital, J.P. Gore, and R. Viskanta, (1995), AIAA Paper No. 95–2036.

[22]. W.J. Mantle, and W.S. Chang, J. Thermophys. Heat Transfer 5 (1991) 545–549.

[23]. M.G. Semena, and V.K. Zaripov, Thermal Engineering 24 (4) (1977) 69–72.

[24]. R.M. Kendall, S.T. DesJardin, J.D. Sullivan, (1992), Basic Research on Radiant Burners, Gas Research Institute Report number 92-7027-171.

[25]. S. Yagi, D. Kunii, and N. Wakao, AIChE J. 6 (1960) 543–546.

[26]. C.T. Bowman, R.K. Hanson, W.C. Gardiner, V. Lissianski, M. Frenklach, M. Goldenberg and G.P. Smith, “GRI-Mech 2.11 - An Optimized Detailed Chemical Reaction mechanism for Methane Combustion and NO Formation
and Reburning,” GRI-Report GRI-97/0020, March 1997.

[27]. Y.B. Zeldovich, Acta Physiocochemica USSR, 21: 577 (1946).

[28]. C.P. Fenimore, 13th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 1970, pp. 373–380.

[29]. J. Wolfrum, Chemie Ingenieur Technik, 44: 656 (1972).

[30]. P.C. Malte, and D.T. Pratt, Combust. Sci. Tech., 9:221 (1974).

[31]. J.W. Bozzelli, and A.M. Dean, Int. J. Chem. Kinet. 27 (1995) 1097–1109.

[32]. R.C. Flagan, and J.H. Seinfeld, Fundamentals of Air Pollution Engineering. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1988.

[33]. A. Schlegel, S. Buser, P. Benz, H. Bockhorn, and F. Mauss, 25th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 1994, pp. 1019–1026.

[34]. P.A. Berg, G.P. Smith, J.B. Jeffries, and D.R. Crosley, 27th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 1998, pp. 1377–1384.

[35]. V. Sick, F. Hildenbrand, and P. Lindstedt, 27th Symp. (Int.) on Combust., The Combustion Institute, Pittsburgh, 1998, pp. 1401–1409.

[36]. S. Singh, Personal communication, January 1996.

Downloads

Published

2014-09-30

How to Cite

Rumminger, M. D., & Dibble, R. W. (2014). Nitric Oxide Pathways in Surface-Flame Radiant Burners. Eurasian Chemico-Technological Journal, 16(2-3), 149–157. https://doi.org/10.18321/ectj179

Issue

Section

Articles