Sorptive and Separation Properties of Ultrafiltration Membranes on the Basis of Sulfonate-Containing Polyamide with Respect to Bovine Serum Albumin
DOI:
https://doi.org/10.18321/ectj140Abstract
Investigation of sorption of bovine serum albumin in the static mode and in ultrafiltration conditions by
membranes produced from statistic copolymers of aromatic polyamides synthesized by polycondensation
of the sodium salt of 4, 4/-diaminodiphenylamine-2-sulfo-acid and m-phenylenediamine in various ratios
with chloroanhydride of isophthalic acid has been carried out. Interconnection has been established
between the charge of protein macromolecules, concentration of fragments containing ionic groups in the
aromatic polyamide and sorptive, separation and transport characteristics of membranes on its basis. It
has been shown that dominant forces that determine membrane/protein interaction in the systems under
consideration are coulomb forces, but the contribution of hydrophobic interactions is also significant. The
results of mathematical processing of experimental data indicate that there is a good compliance of sorption
isotherms with Langmuir’s model. Depending on the concentration of fragments containing ionic groups in
the polyamide and pH of the solution, the calculated values of maximum sorption in sorbent/sorbate systems
under consideration vary in the range of 0.028 to 0.338 mg/cm2. Dynamic investigations have shown that
selectivity of the membranes is 85 to 98%. To assess the sorptive activity of the membranes in the course
of ultrafiltration, indicators of sorption and sorptive losses calculated on the basis of the ratio of the change
of mass content of protein in the process of filtration to the initial value have been used. Depending on the
material used to produce the membrane and pH of the solution being filtered, sorptive losses range from 5
to 33%. Their minimum value is observed when pH is higher than the isoelectric point of the protein, i.e. in
the field where protein macromolecules and the surface of the membrane have like charges.
References
2. Wang, M., Wu, L.-G., Zheng, X.-C., Mo, J.-X., and Gao, C.-J., J. Colloid and Interface Sci. 300 (1): 286 (2006).
3. Barrona, G.-N., Cha, B.-J., and Jung B. J. Membr. Sci. 290 (1 – 2): 46 (2007).
4. Feng, J., Wei, J.-F., Zhang, H., Yang, Y.-M., and Wang, X.-L. J. Tianjin Polytechn. Univ. 29 (1):10 (2010).
5. Shen, L.-Q., Xu, Zh.-K., Yang, Q., Sun, H.-L., Wang, Sh.-Y., and Xu, Y.-Y. J. Appl. Polym. Sci.92 (3): 1709 (2004).
6. Arthanareeswaran, G., Mohan, D., and Raajenthieren, M. Appl. Surface Sci. 253 (21): 8705 (2007).
7. Yan, Ch., Zhang, Sh., Yang, D., and Jian, X. J. Appl. Polym. Sci. 107 (3): 1809 (2008).
8. Wenling, F., Lei, L., Feng, G., Xiaofeng, L., and Liwei, G. Desalination. 249 (3): 1385 (2009).
9. Zhao, X., Su, Y., Chen, W., Peng, J., and Jiang, Zh. J. Membr. Sci. 382 (1 – 2): 222 (2011).
10. Wu, X., Hou, Ch.-J., Dharia, J., Konstantin, P., and Yang Y. Pat 6780327 USA (2000).
11. Wu, X., Hou, Ch.-J., Dharia, J., Konstantin, P., and Yang Y. Pat 7094347 USA (2005).
12. Rohani, M.M., and Zydney, A.L. J. Membr. Sci. 337 (1 – 2): 324 (2009).
13. Wu, X.-M., He, G.-H., Gu, Sh., and Yao, P.-J. Polymer Mater. Sci. Technol. Eng. 21 (4): 10 (2005).
14. Bowen, R.M., Cheng, Sh.Y., Doneva, T.A.,and Oatley, D.L. J. Membr. Sci. 250 (1 – 2): 1 (2005).
15. Ramachandhran, V., Ghosh, A.K., and Tewari, P.K. Separ. Sci. and Technol. 44 (3): 599 (2009).
16. Ettori, A., Gaudichet-Maurin, E., Schrotter, J.- Ch., Aimar, P., and Causserand, Ch. J. Membr. Sci. 375 (1 – 2): 220 (2011).
17. Joshi, R.N., Singh, K., and Bhattacharya, A. Braz. J. Chem. Eng. 28 (3): 457 (2011).
18. Xu, J., Feng, X., and Gao, C. J. Membr. Sci. 370 (1 – 2): 116 (2011).
19. Yu, S., Liu, X., Liu, J., Wu, D., Liu, M., and Gao, C. Separ. and Purif. Technol. 76 (3): 283 (2011).
20. Salgin, S., Takac, S., and Ozdamar, T.-H. J. Membr. Sci. 278 (1 – 2): 251 (2006).
21. Matsumura, H., and Saburi, M. Colloids and Surf. B 47 (2): 146 (2006).
22. Zhang, S.P., and Sun, Y. Biotechnol. Bioeng. 75 (6): 710 (2001).
23. Su, Y.-L., and Li, Ch. React. and Funct. Polym. Res. 14 (1): 161 (2007).
24. Li, S., Li, W. Colloids and Surf. A 295: 159 (2007).
25. Yavorskaya, E.S. Membranes. 34 (2): 34 (2007).
26. Polotskaya, G.A., Meleshko, T.K., Gofman, I.V., Polotsky, A.E., and Cherkasov, A.N. Separ. Sci. and Technol. 44
(16): 3814 (2009).
27. Berezkin, V.V., Kiseleva, O.A., Nechaev, A.N., Sobolev, V.D., and Churaev N.V. Colloid. J. 56 (3): 319 (1994).
28. Tristram, G.R. Proteins. Ed. H. Neurath, K. Bailey, N. Y. V. 1. 1953. P. 244.
29. White, A., Handler, Ph., Smit, E. Principles of biochemistry. V. 1. 1978. P. 125.
30. Mitrofanova, N.V., Nechaev, A.N., Chochlova, T.D., and Mchedlishvily, B.V. Colloid. J. 65 (2):248 (2003).
31. Chataybe, E.V., Nechaev, A.N., Trusov, L.I., Svitzov, A.A., Penzin, R.A., Cherkasov, A.N., and Polotskiy,
A.E. Membranes. 16: 3 (2002).
32. Pashe, S., Voros, J., Griesser, H. J. Phys. Chem. B. 109 (37): 17545 (2005).
33. Mo, H., Tay, K.-G., Ng, H.-Y. J. Membr. Sci. 315 (1 – 2): 28 (2008).
34. Jordanskii, A.L., Markin, V.S., Razumovsky, L.P., Kosenko, R.Y., Tarasova, N.A., and Zaikob, G.E. Desalination. 104 (1 – 2): 113 (1996).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.