Influence of the Surface Properties of the Bois Carre Seeds Activated Carbon for the Removal of Lead From Aqueous Ssolutions

Authors

  • L. Largitte EA COVACHIMM 3592, Université des Antilles de la Guyane, Campus de Fouillole, 97110 Pointe – a –Pitre, France
  • S. Gervelas EA COVACHIMM 3592, Université des Antilles de la Guyane, Campus de Fouillole, 97110 Pointe – a –Pitre, France
  • T. Tant Laboratoire Hygiène et environnement, Institut Pasteur, Morne Jolivière, 97139 Abymes, France
  • P. Couespel Dumesnil Laboratoire Hygiène et environnement, Institut Pasteur, Morne Jolivière, 97139 Abymes, France
  • P. Lodewyckx Royal Military Academy, Department of Chemistry, Renaissancelaan 30, 1000 Brussels, Belgium

DOI:

https://doi.org/10.18321/ectj115

Abstract

An activated carbon from Bois carré (Citharexylum Fruticosum L.) seeds was prepared by chemical activation with phosphoric acid. The activated carbon obtained has a surface area of 594 m2/g and a high content of acid groups of 3.44 mmol.g-1. This carbon was studied for the removal of lead from water. Sorption studies were performed at 30 °C at different pH and adsorbent doses, in batch mode. Maximum adsorption occurred at pH 7 for an adsorbent dose of 1g/L. Kinetic studies, at the initial concentration of 150 mg/L of lead, pH 5 and an adsorbent dose of 1 g/L, yielded an equilibrium time of 30 h for this activated carbon. The kinetic data were modelled with the pseudo first order, the pseudo second order and the Bangham models. The pseudo second order model fitted the data well. The sorption rate constant (2.10-3 mol-1.Kg.s-1) and the maximum amount of lead adsorbed are quite good (0.18 mol.kg-1) compared to the data found in literature. Sorption equilibrium studies were conducted in a concentration range of lead from 0 to 150 mg/L, at pH 5, adsorbent dose 1 g/L. In an aqueous lead solution with an initial concentration of 30 mg/L, activated Bois carré seed carbon removed (at equilibrium) 48 % of the heavy metal. The equilibrium data were modelled with the Langmuir and Freundlich equations, of which the latter gave the best fit. The Freundlich constants n (3.76 L.mol-1) and Kf (1.06 mol.kg-1) are in good agreement with literature. The Bois carré seed activated carbon is a very efficient carbon in terms of the metal amount adsorbed per unit of surface area (0. 06 m2 /g). This good result is due to the presence of many active acid sites on the surface of this activated carbon.

References

1. Z. Reddad, C. Gerente, Y. Andres, P. Le Cloirec, Environ. Sci. Technol. 36 (2002) 2067–2073.

2. M. Gavrilescu, Eng. Life Sci. 4 (2004) 219–232.

3. D. Mohan, C.U. Pittman, P.H. Steele Jr., J. Colloid Interface Sci. 297 (2006) 489–504.

4. D. Mohan, K.P. Singh, Water Res. 36 (2002) 2304–2318.

5. L.J. Kosarek, Removal of Various Toxic Heavy Metals and Cyanide from Water by Membrane Processes, Ann Arbor Science, Ann Arbor, MI, 1981.

6. K. Wilson, H. Yang, C.W. Seo, W.E. Marshall, Biores. Technol. 97 (2006) 2266–2270.

7. I. Bodek, W.J. Lyman, W.F. Reehl, D.H. Rosenblatt, Environmental Inorganic Chemistry: Properties, Processes and Estimation Methods, Pergamon Press, New York, 1998.

8. R.A. Goyer, I.J. Chisolon, Lead, Academic Press, New York/London, 1972.

9. S. Manahan, Environmental Chemistry, Brooks/Colei, CA, 1984.

10. G.F. Nordberg, Environ. Toxicol. Chem. 9 (1990) 887–894.

11. WHO, Guidelines for Drinking-Water Quality, 1984.

12. G. Gode, E. Pehlivan, J. Hazard. Mater. B136 (2006) 330–337.

13. L. Zhang, J. Zhou, D. Zhou, Y. Tang, J. Membr. Sci. 162 (1999) 103–109.

14. H. Leinonen, J. Lehto, React. Funct. Polym. 43 (2000) 1–6.

15. S.K. Ouki, M. Kavannagh, Waste Manage. Res. 15 (1997) 383–394.

16. C.P. Huang, M.H. Wu, Water Res. 11 (1977) 673–679.

17. D. Reddy, K. Seshaiah, A.V.R. Reddy, M.M. Rao and M.C. Wang, J. Hazard.mat 174 (2010) 831-838.

18. V.K. Gupta, C.K. Jain, I. Ali, M. Sharma, V.K. Saini, Water Res. 37 (2003) 4038–4044.

19. G. Issabayeva, M.K. Aroua and N.M. Sulaiman, Bioresource Technology 97 (2006) 2350-2355.

20. J.P. Chen and M.Lin, Water Research 35 (2001) 2385-2394.

21. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309–319.

22. M.M. Dubinin, G.M. Plavnik, Carbon 6 (1968) 183–192.

23. J.P. Olivier, Journal of Porous Materials, Vol. 2 (1995), 9-17.

24. H.P. Boehm, Carbon 32 (1994) 759.

25. J.S. Noh and J.A. Schwarz, Carbon 28 (1990), 675-682.

26. Gregg S.J and Sing K.S.W, Adsorption, Surface Area and Porosity, Academic Press, London, 1982.

27. S. Lagergren, Der Sogenannten adsorption geloster stoffe Kungliga Svenska Vetenska psalka de MiensHandlingar 24 (1898) 1–39.

28. Y.S. Ho, D.A.J. Wase, C.F. Foster, Environ. Technol. 17 (1996) 71–77.

29. Y.S. Ho and G. McKay, Process Biochem 34 (1999), 451-465.

30. P. Patnukao, A. Kongsuwan, P. Pravasant, Journal of environmental sciences 20 (2008) 1028-1034.

31. M. Nadeem, A. Mahmood, S. Shahid, S.S. Shah, A.M. Khalid, G. McKay, Journal of Hazardous materials 138 (2006), 604-613.

32. H. Lalhruaitluanga, J. Jayaram, M.N.V. Prasad, K.K. Kumar, Journal of hazardous materials 175 (2010) 311-318.

33. L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, C. Zhang, Bioresource Technology 101 (2010) 5808-5814.

34. C.H. Giles, T.H. MacEwan, S.H. Nakhwa, D. Smith, J.Chem.Soc (1960) 3973.

35. I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361–1403.

36. H. Freundlich, W.J. Helle, J. Am. Chem. Soc. 61 (1939) 2–28.

37. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Journal of Hazardous Materials, 125(2005), 211-220.

38. C. Faur-Brasquet, Z. Reddad, K. Kadirvelu, P. Le Cloirec, Applied Surface Science 196 (2002), 356-365.

39. X. Song, H. Liu, L. Cheng, Y. Qu, Desalination 255(2010) 78-83.

40. K. Kadirvelu, C. Faur-Brasquet, P. Le Cloirec, Langmuir 16 (2000) 8404–8409.

41. S.M. Lee, A.P. Davis, Water Res. 35 (2001) 534–540.

42. A. Netzer, D.E. Hughes, Water Res. 18 (1984) 927.

43. J. Burgess, Metal Ions in Solution, Ellis Horwood, New York, 1978.

44. V. Gomez-Serrana, A. Macias-Garcia, A. Espinosa-Mansilla, C. Valenzuela-Calahorro, Water Res. 32 (1998) 1–4.

Downloads

Published

2012-09-28

How to Cite

Largitte, L., Gervelas, S., Tant, T., Couespel Dumesnil, P., & Lodewyckx, P. (2012). Influence of the Surface Properties of the Bois Carre Seeds Activated Carbon for the Removal of Lead From Aqueous Ssolutions. Eurasian Chemico-Technological Journal, 14(3), 201–210. https://doi.org/10.18321/ectj115

Issue

Section

Articles