Morphological Studies on CNT Reinforced SiC/SiOC Composites
DOI:
https://doi.org/10.18321/ectj64Abstract
Carbon nanotubes (CNTs) have been grown on commercially available silicon carbide (SiC) fabric by the catalytic chemical vapour deposition (CCVD) technique. These CNT coated SiC fabrics were used to develop Silicon Carbide–Carbon Nanotube–Silicon oxy Carbide matrix composites (SiC/CNTs/SiOC) by sol gel technique. Silicon oxy Carbide refers to carbon containing silicates wherein oxygen and carbon atoms
share bonds with silicon in the amorphous network structure. In this approach, alkyl-substituted silicon
alkoxides, which are molecular precursors containing oxygen and carbon functionalities on the silicon, are
hydrolyzed and condensed in the presence of sucrose, which provides excess of carbon to bond into the
silicon alkoxide network during hydrolysis. A low-temperature (1000 °C) heat-treatment of the gel creates
a glassy silicate material whose molecular structure consists of an oxygen/carbon anionic network. The
microstructures of these hybrid materials and their composites have been studied using scanning electron
microscope (SEM), transmission electron microscope (TEM) and Raman spectroscope.
References
2. Porte. L., Satre. A., J. Mat. Sci, Evidence For Silicon Oxycarbide Phase In Nicalon Silicon Carbide Fiber, 24 (27) (1989).
3. White. D. A., Oleff. S. M., Boyer. R.D., Budinger. P.A.,Fox. J. R., Adv. Ceram. Mater, Preparation of Silicon Carbide From Organosilicon Gels: II, Gel Pyrolysis And Sic Characterization, 2(1) (1987) 53.
4. Pantano C.G., Anant K.S., Zhang H., Journal of Sol-Gel Science and Technology, Silicon oxycarbide Glasses, 14 (1999) 7.
5. Luzzi D.E., Smith B. W., Carbon, Carbon Cage Structures In Single Wall Carbon Nanotubes: A New Class Of Materials, 38 (2000) 1751.
6. Bandow S.,Takizawa M., Hirahara K., Yudasaka M., and Iijima S., Chem. Phys. Lett. Raman Scattering Study of Double-Wall Carbon Nanotubes Derived from the Chains of Fullerenes in Single-Wall Carbon Nanotubes. 337 (48) (2001).
7. Lee J., Kim H., Kahng S.H., Kim G.,Son Y.W., Ihm J.,Kato H.,Wang Z.W., Okazaki T,, Shinohara H., Kuk Y., Nature, Bandgap Modulation of Carbon Nanotubes by Encapsulated Metallofullerenes, 415 (2002) 1005.
8. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperical College Press, London (1998).
9. D. Qian, G. J. Wagner, W. K. Liu, M. F. Yu, and R. S. Ruoff, Appl.Mech. Reviews. Mechanics of Carbon Nanotubes, 55 (2002) 495.
10. P. G. Colins and A. Zettl, Appl. Phys. Lett.,A Simple and Robust Electron Beam Source from Carbon Nanotubes, 69 (1996) 1969.
11. G. Z. Chen, M. S. P. Shaffer, D. Coleby, G. Dixon, W. Zhou, D. J. Fray, and A. H. Windle, Adv. Mater, Carbon Nanotube and Polypyrrole Composites: Coating and Doping, 12 (2000) 522.
12. M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, and W. J. Blau, Appl. Phys. Lett., Morphological And Mechanical Properties Of Carbon-Nanotube-Reinforced Semicrystalline And Amorphous Polymer Composites, 81 (2002) 5123.
13. V. P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, P. M. Ajayan, and M. N. Ghasemi-Nejhad, Nat. Mater, Multifunctional Composites Using Reinforced Laminae with Carbon Nanotube Forests, 5 (2006) 457.
14. Y. Zhao, J. Liu, and Z. Zhang, Journal of Physics: Condensed Matter, Film Growth of Pillars of Multiwalled Carbon Nanotubes, 15 (2003) L565.
15. L.M. Manocha, R. Pande, Journal of Nanoscience and Nanotechnology, Growth of Carbon Nanotubes on Silicon Carbide Fabric as Reinforcement for SiC/C Composite,10 (2010) 3822.
16. E. Borowiak-Palen, T. Pichler, X. Liu, M. Knupfer, A. Graff, O. Jost, W. Pompe, R. J. Kalenczuk, and J. Fink, Chem. Phys. Lett. Reduced Diameter Distribution Of Single-Wall Carbon Nanotubes By Selective Oxidation, 363 (2002) 567.
17. H. Kajiura, S. Tsutsui, H. J. Huang, and Y. Murakami, Chem. Phys. Lett. High-Quality Single-Walled Carbon Nanotubes From ArcProduced Soot, 364 (2002) 586.
18. E. Farkas, M. E. Anderson, Z. H. Chen, and A. G. Rinzler, Chem.Phys. Lett., Length Sorting Cut Single Wall Carbon Nanotubes By High Performance Liquid Chromatography, 363 (2002) 111.
19. V. Raman, O. P. Bahl, N. K. Jha, Journal Of Materials Science Letters, Synthesis of Silicon Oxy Carbide Through Sol Gel Process, 12 (1993) 1188.
20. Lj. Cerovic, S. K. Milonjic & S. P. Zec, Ceramics International, A Comparison Of SolGel Derived Silicon Carbide Powders From Saccharose And Activated Carbon, 21 (1995) 271.
21. Guo-Qiang Jin, Xiang-Yun Guo, Microporous and Mesoporous Materials,Synthesis and Characterization of Mesoporous Silicon Carbide, 60 (2003) 207.
22. Zhang Hai-yan,Chen Jian,Liu Song-hao,Chen Di-hu,Wu Chun-yan,He Yan-yang,Liang Lizheng and Peng Shao-qi, Chinese Physics, The Raman Scattering Of Carbon Nanotubes Produced In Different Inert Gases And Their Pressures By Arc Discharge, 9 (2000) 375.
23. J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D. N. Weldon, M. Delamesiere, S. Draper, and H. Zandbergen, Chem.Phys. Lett. Resonance Raman And Infrared Spectroscopy Of Carbon Nanotubes, 221(1994) 53.
24. H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Takahasi, Phys. LettB., Non Trivial Ground State of Closed Bosonic Membrane, 202 (1993) 509.
25. R. Kamalakaran, M. Terrones, T. Seeger, P. Kohler-Redlich, M. Ruhle, and Y. A. Kim, Appl. Phys. Lett., Synthesis of Thick and Crystalline Nanotube Arrays by Spray Pyrolysis 77 (2000) 3385.
26. F. Tuinstra and J. L. Koenig, J. Chem. Phys., Raman Spectrum of Graphite, 53 (1970) 1126.
27. P.H. Tan ,S.L. Zhang et al; J Raman Spectroscopy, Comparative Raman Study of Carbon Nanotubes Prepared by D.C. Arc Discharge and Catalytic Methods,28 (1997) 269.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.