Methane Pyrolysis over Carbon Catalysts
DOI:
https://doi.org/10.18321/ectj548Abstract
Methane pyrolysis at the temperature range of 550-1000 °C in gas flow reactor with fixed bed of mixed catalysts based on carbon materials of various structure (fullerene cocoons, fullerene black, vacuum black,
cathode deposit, onion-like carbon, glassy carbon, carbon fibers, mineral shungite and graphite) has been
studied. Methane pyrolysis products, including stoichiometric amount of hydrogen are C3-C4 alkanes, C2-C4 alkenes, aromatics and pyrolytic carbon. Methane pyrolysis is carried out both on a catalytic surface and in a volume and contribution of the surface is determined by pyrolysis temperature. Materials with curved carbon surface show an activity in methane dehydrogenation at lower temperatures, than materials with planar basic structure elements. Materials with a small specific surface area favor methane aromatization at 950–1000 °C with formation of mainly benzene, toluene and naphthalene. The primary activation of C–H bond in methane at temperatures of lower than 850 °C, as well as the multiple dehydrogenation conversions resulting in the formation of pyrolytic carbon and its precursors (aromatics), are, probably, heterogeneous reactions.
References
2. Moravsky A.P., Fursikov P.V., Kachapina L.M. et al. // in Recent Adv. in Chem. Phys. of Fullerenes and Rel. Mater, V. 2./ Eds. Ruoff R.S. and Kadish K.M., The Electrochem. Soc., Pennington. New Jersey, 995. P. 156.
3. Belz T., Schlögl R. // Synth. Metals. 1996. V. 77. P. 223.
4. Harris P.J.F. // J. Microscopy. 1997. V. 186. P. 88.
5. Kuznetsov V.L., Chuvilin A.L., Moroz E.M. et al. // Carbon. 1994. V. 32. P. 873.
6. Kuznetsov V.L., Chuvilin A.L., Butenko Yu.V. et al. // Chem. Phys. Lett. 1994. V. 222. P. 343.
7. Ebbesen T.W., Ajayan P.M., Hiura H., Tanigaki K. // Nature. 1994. V. 367. P. 519.
8. Chekanova V.D., Fialkov A.S. // Uspekhi khimii. 1971. T.40 N6. p.777.
9. Buseck P.R., Tsipursky S.J., Hettich R. // Science. 1992. V. 257. P. 215.
10. Werner H., Wohlers M., Herein D. et al. // Fullerene Science and Technology. 1993. V. 1. N 2. P. 199.
11. Miki-Yoshida M., Castillo R., Ramos S. et al. // Carbon. 1994. V. 32. N 2. P. 231.
12. Dunne L.J., Sarkar A.K., Kroto H.W. et al. // Fullerenes’96. Oxford. 1996. P. 176.
13. Hirshon A.S., Wu H.-J., Wilson R.B., Malhotra R. // J. Phys. Chem., 1995. V. 99. N 49. P. 17483.
14. Mochida I., Aoyagi Yu., Yatsunami Sh., Fujitsu H. // J. Anal. Appl. Pyrolisis. 1991. V. 21. N 1-2. P. 95.
15. Murata K., Ushijima H. // J. Chem. Soc., Chem. Commun. 1994. P. 1157.
16. Maggiore R., Scire S., Crisafulli C. et al. // React. Kinet. Catal. Lett. 1990. V. 41. P. 153.
17. Appleby W.G., Gibson J.W., Good G.M. // Ind. Eng. Chem. 1962. V. 1. N 2. P. 102.
18. Billaud F.G., Baronnet F., Gueret C.P. // Ind. Eng. Chem. Res. 1993. V. 32. P. 1549.
19. Ruess G., Vogt F. // Monatsh. 1948. Bd. 78. S. 222.
20. Buyanov R.A. Catalysts coking. Novosibirsk. Nauka. 1983. S. 30, 64.