Methane Pyrolysis over Carbon Catalysts
DOI:
https://doi.org/10.18321/ectj548Abstract
Methane pyrolysis at the temperature range of 550-1000 °C in gas flow reactor with fixed bed of mixed catalysts based on carbon materials of various structure (fullerene cocoons, fullerene black, vacuum black,
cathode deposit, onion-like carbon, glassy carbon, carbon fibers, mineral shungite and graphite) has been
studied. Methane pyrolysis products, including stoichiometric amount of hydrogen are C3-C4 alkanes, C2-C4 alkenes, aromatics and pyrolytic carbon. Methane pyrolysis is carried out both on a catalytic surface and in a volume and contribution of the surface is determined by pyrolysis temperature. Materials with curved carbon surface show an activity in methane dehydrogenation at lower temperatures, than materials with planar basic structure elements. Materials with a small specific surface area favor methane aromatization at 950–1000 °C with formation of mainly benzene, toluene and naphthalene. The primary activation of C–H bond in methane at temperatures of lower than 850 °C, as well as the multiple dehydrogenation conversions resulting in the formation of pyrolytic carbon and its precursors (aromatics), are, probably, heterogeneous reactions.
References
2. Moravsky A.P., Fursikov P.V., Kachapina L.M. et al. // in Recent Adv. in Chem. Phys. of Fullerenes and Rel. Mater, V. 2./ Eds. Ruoff R.S. and Kadish K.M., The Electrochem. Soc., Pennington. New Jersey, 995. P. 156.
3. Belz T., Schlögl R. // Synth. Metals. 1996. V. 77. P. 223.
4. Harris P.J.F. // J. Microscopy. 1997. V. 186. P. 88.
5. Kuznetsov V.L., Chuvilin A.L., Moroz E.M. et al. // Carbon. 1994. V. 32. P. 873.
6. Kuznetsov V.L., Chuvilin A.L., Butenko Yu.V. et al. // Chem. Phys. Lett. 1994. V. 222. P. 343.
7. Ebbesen T.W., Ajayan P.M., Hiura H., Tanigaki K. // Nature. 1994. V. 367. P. 519.
8. Chekanova V.D., Fialkov A.S. // Uspekhi khimii. 1971. T.40 N6. p.777.
9. Buseck P.R., Tsipursky S.J., Hettich R. // Science. 1992. V. 257. P. 215.
10. Werner H., Wohlers M., Herein D. et al. // Fullerene Science and Technology. 1993. V. 1. N 2. P. 199.
11. Miki-Yoshida M., Castillo R., Ramos S. et al. // Carbon. 1994. V. 32. N 2. P. 231.
12. Dunne L.J., Sarkar A.K., Kroto H.W. et al. // Fullerenes’96. Oxford. 1996. P. 176.
13. Hirshon A.S., Wu H.-J., Wilson R.B., Malhotra R. // J. Phys. Chem., 1995. V. 99. N 49. P. 17483.
14. Mochida I., Aoyagi Yu., Yatsunami Sh., Fujitsu H. // J. Anal. Appl. Pyrolisis. 1991. V. 21. N 1-2. P. 95.
15. Murata K., Ushijima H. // J. Chem. Soc., Chem. Commun. 1994. P. 1157.
16. Maggiore R., Scire S., Crisafulli C. et al. // React. Kinet. Catal. Lett. 1990. V. 41. P. 153.
17. Appleby W.G., Gibson J.W., Good G.M. // Ind. Eng. Chem. 1962. V. 1. N 2. P. 102.
18. Billaud F.G., Baronnet F., Gueret C.P. // Ind. Eng. Chem. Res. 1993. V. 32. P. 1549.
19. Ruess G., Vogt F. // Monatsh. 1948. Bd. 78. S. 222.
20. Buyanov R.A. Catalysts coking. Novosibirsk. Nauka. 1983. S. 30, 64.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.