Methane Pyrolysis over Carbon Catalysts

Authors

  • S. D. Kushch Institute of Problem of Chemical Physics RAS, 18 Institutsky prospect, Chernogolovka, Moscow Region, 142432, Russia
  • V. E. Muradyan Institute of Problem of Chemical Physics RAS, 18 Institutsky prospect, Chernogolovka, Moscow Region, 142432, Russia
  • P. V. Fursikov Institute of Problem of Chemical Physics RAS, 18 Institutsky prospect, Chernogolovka, Moscow Region, 142432, Russia
  • Eu. I. Knerelman 1Institute of Problem of Chemical Physics RAS, 18 Institutsky prospect, Chernogolovka, Moscow Region, 142432, Russia
  • V. L. Kuznetsov Boreskov Institute of Catalysis SB RAS, 5 Lavrentieva str., 630090 Novosibirsk, Russia
  • Yu. V. Butenko Boreskov Institute of Catalysis SB RAS, 5 Lavrentieva str., 630090 Novosibirsk, Russia

DOI:

https://doi.org/10.18321/ectj548

Abstract

Methane pyrolysis at the temperature range of 550-1000 °C in gas flow reactor with fixed bed of mixed  catalysts based on carbon materials of various structure (fullerene cocoons, fullerene black, vacuum black,
cathode deposit, onion-like carbon, glassy carbon, carbon fibers, mineral shungite and graphite) has been
studied. Methane pyrolysis products, including stoichiometric amount of hydrogen are C3-C4 alkanes, C2-C4 alkenes, aromatics and pyrolytic carbon. Methane pyrolysis is carried out both on a catalytic surface and in a volume and contribution of the surface is determined by pyrolysis temperature. Materials with curved carbon surface show an activity in methane dehydrogenation at lower temperatures, than materials with planar basic structure elements. Materials with a small specific surface area favor methane aromatization at 950–1000 °C with formation of mainly benzene, toluene and naphthalene. The primary activation of C–H bond in methane at temperatures of lower than 850 °C, as well as the multiple dehydrogenation conversions resulting in the formation of pyrolytic carbon and its precursors (aromatics), are, probably, heterogeneous reactions.

References

1. Kushch S.D., Fursikov P.V., Muradyan V.E., Moravskii A.P. // Petrol. Chem. 1997. V. 37. N2. P.112–118.

2. Moravsky A.P., Fursikov P.V., Kachapina L.M. et al. // in Recent Adv. in Chem. Phys. of Fullerenes and Rel. Mater, V. 2./ Eds. Ruoff R.S. and Kadish K.M., The Electrochem. Soc., Pennington. New Jersey, 995. P. 156.

3. Belz T., Schlögl R. // Synth. Metals. 1996. V. 77. P. 223.

4. Harris P.J.F. // J. Microscopy. 1997. V. 186. P. 88.

5. Kuznetsov V.L., Chuvilin A.L., Moroz E.M. et al. // Carbon. 1994. V. 32. P. 873.

6. Kuznetsov V.L., Chuvilin A.L., Butenko Yu.V. et al. // Chem. Phys. Lett. 1994. V. 222. P. 343.

7. Ebbesen T.W., Ajayan P.M., Hiura H., Tanigaki K. // Nature. 1994. V. 367. P. 519.

8. Chekanova V.D., Fialkov A.S. // Uspekhi khimii. 1971. T.40 N6. p.777.

9. Buseck P.R., Tsipursky S.J., Hettich R. // Science. 1992. V. 257. P. 215.

10. Werner H., Wohlers M., Herein D. et al. // Fullerene Science and Technology. 1993. V. 1. N 2. P. 199.

11. Miki-Yoshida M., Castillo R., Ramos S. et al. // Carbon. 1994. V. 32. N 2. P. 231.

12. Dunne L.J., Sarkar A.K., Kroto H.W. et al. // Fullerenes’96. Oxford. 1996. P. 176.

13. Hirshon A.S., Wu H.-J., Wilson R.B., Malhotra R. // J. Phys. Chem., 1995. V. 99. N 49. P. 17483.

14. Mochida I., Aoyagi Yu., Yatsunami Sh., Fujitsu H. // J. Anal. Appl. Pyrolisis. 1991. V. 21. N 1-2. P. 95.

15. Murata K., Ushijima H. // J. Chem. Soc., Chem. Commun. 1994. P. 1157.

16. Maggiore R., Scire S., Crisafulli C. et al. // React. Kinet. Catal. Lett. 1990. V. 41. P. 153.

17. Appleby W.G., Gibson J.W., Good G.M. // Ind. Eng. Chem. 1962. V. 1. N 2. P. 102.

18. Billaud F.G., Baronnet F., Gueret C.P. // Ind. Eng. Chem. Res. 1993. V. 32. P. 1549.

19. Ruess G., Vogt F. // Monatsh. 1948. Bd. 78. S. 222.

20. Buyanov R.A. Catalysts coking. Novosibirsk. Nauka. 1983. S. 30, 64.

Downloads

Published

2001-08-20

How to Cite

Kushch, S. D., Muradyan, V. E., Fursikov, P. V., Knerelman, E. I., Kuznetsov, V. L., & Butenko, Y. V. (2001). Methane Pyrolysis over Carbon Catalysts. Eurasian Chemico-Technological Journal, 3(2), 67–72. https://doi.org/10.18321/ectj548

Issue

Section

Articles