Methane Conversion over Vacuum Carbon Black: Influence of Hydrogen
DOI:
https://doi.org/10.18321/ectj560Abstract
Methane pyrolysis over vacuum carbon black has been studied in the temperature range 550–1000 °C.
The methane conversion degree and selectivity with respect to ethene and propene do not depend on the
initial concentration of methane i.e. the process order with respect to methane is first. The selectivity with
respect to pyrolytic carbon is antibate to the methane initial concentration. Hydrogen introduced to methane inhibits formation of pyrolytic carbon and aromatics especially in methane pyrolysis. The methane conversion degree in pyrolysis of methane/hydrogen mixture is inversely proportional to the initial concentration of hydrogen while the selectivity with respect to ethene being symbate to the one. A hypothesis on the reason of inhibition of pyrolytic carbon formation by hydrogen is proposed. Methane pyrolysis is a homogeneous-heterogeneous reaction up to 850 °C, but homogeneous reaction is prevalent at the temperature range of maximal selectivity with respect to alkenes.
References
2. Rokstad O.A., Olsvik O., Jenssen B., Holmen A., in Novel production methods for ethylene, light hydrocarbons and aromatics / Eds Albright L.F. et al. New York: Marcel Dekker, 1992. Chapter 13. P. 259.
3. Mochida I., Aoyagi Yu., Fujitsu H., Chem. Lett. 1990. P. 1525.
4. Mochida I., Aoyagi Yu., Yatsunami Sh., Fujitsu H. J.Anal. Appl. Pyrolysis. 1991. V. 21. #1-2. P. 95.
5. Yugita H., Ogata A., Obuchi A. et al., in Abstracts of Japan - FSU Catalysis seminar. Tsukuba. Japan. P. 148.
6. Marata K., Ushijima H., J. Chem. Soc., Chem. Commun. 1994. P. 1157.
7. Wu H.-J., Hirschon A.S., Malhotra R., Wilson R.B., in Recent Adv. in Chem. Phys. of Fullerenes and Rel. Mater. V. 1. / Eds. Kadish K. et al. The Electrochem. Soc. Pennington. New Jersey, 1994. P. 758.
8. Hirschon A.S., Wu H.-J., Wilson R.B., Malhotra R., J. Phys. Chem. 1995. V. 99. #49. P. 17483.
9. Kushch S.D., Fursikov P.V., Muradyan V.E., Moravskii A.P., Petrol. Chem. 1997. V. 37. N. 2. P. 112–118.
10. Kushch S.D., Muradyan V.E., Fursikov P.V, Knerelman Eu.I., Kuznetsov V.L. and Butenko Yu.V., Eurasian Chem.-Techn. J., 2001.V.3. N. 2. P. 67-72.
11. Kushch S.D., Fursikov P.V., Kuyunko N.S., Kulikov A.V., Savchenko V.I., Eurasian Chem.-Techn. J., 2001.V.3. N 2. P. 131-139.
12. Egloff G., Schaad R.E., Lowry C.D. Jr., J. Phys. Chem., 1930, V.34, N 8, P.1617–1740.
13. Rabinovich E. Ya., Snegireva T.D., Tesner P.A., Doklady Akad. Nauk SSSR, 1953, V. 88, #1, P. 95-97.
14. Billaud F.G., Baronnet F., Gueret C.P., Ind. Eng. Chem. Res. 1993. V. 32. P. 1549.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.