Methane Conversion over Vacuum Carbon Black: Influence of Hydrogen

Authors

  • S. D. Kushch Institute of Problem of Chemical Physics Russian Academy of Sciences 18 Institutsky prospect, Chernogolovka, Moscow Region, Russian Federation, 142432
  • V. E. Muradyan Institute of Problem of Chemical Physics Russian Academy of Sciences 18 Institutsky prospect, Chernogolovka, Moscow Region, Russian Federation, 142432
  • N. S. Kuyunko Institute of Problem of Chemical Physics Russian Academy of Sciences 18 Institutsky prospect, Chernogolovka, Moscow Region, Russian Federation, 142432

DOI:

https://doi.org/10.18321/ectj560

Abstract

Methane pyrolysis over vacuum carbon black has been studied in the temperature range 550–1000 °C.
The methane conversion degree and selectivity with respect to ethene and propene do not depend on the
initial concentration of methane i.e. the process order with respect to methane is first. The selectivity with
respect to pyrolytic carbon is antibate to the methane initial concentration. Hydrogen introduced to methane inhibits formation of pyrolytic carbon and aromatics especially in methane pyrolysis. The methane conversion degree in pyrolysis of methane/hydrogen mixture is inversely proportional to the initial concentration of hydrogen while the selectivity with respect to ethene being symbate to the one. A hypothesis on the reason of inhibition of pyrolytic carbon formation by hydrogen is proposed. Methane pyrolysis is a homogeneous-heterogeneous reaction up to 850 °C, but homogeneous reaction is prevalent at the temperature range of maximal selectivity with respect to alkenes.

References

1. Sokolovskyy V.D., Yur’eva T.M., Matros Yu.Sh. et al., Uspekhi khimii, 1989, V.58, N1, P. 6.

2. Rokstad O.A., Olsvik O., Jenssen B., Holmen A., in Novel production methods for ethylene, light hydrocarbons and aromatics / Eds Albright L.F. et al. New York: Marcel Dekker, 1992. Chapter 13. P. 259.

3. Mochida I., Aoyagi Yu., Fujitsu H., Chem. Lett. 1990. P. 1525.

4. Mochida I., Aoyagi Yu., Yatsunami Sh., Fujitsu H. J.Anal. Appl. Pyrolysis. 1991. V. 21. #1-2. P. 95.

5. Yugita H., Ogata A., Obuchi A. et al., in Abstracts of Japan - FSU Catalysis seminar. Tsukuba. Japan. P. 148.

6. Marata K., Ushijima H., J. Chem. Soc., Chem. Commun. 1994. P. 1157.

7. Wu H.-J., Hirschon A.S., Malhotra R., Wilson R.B., in Recent Adv. in Chem. Phys. of Fullerenes and Rel. Mater. V. 1. / Eds. Kadish K. et al. The Electrochem. Soc. Pennington. New Jersey, 1994. P. 758.

8. Hirschon A.S., Wu H.-J., Wilson R.B., Malhotra R., J. Phys. Chem. 1995. V. 99. #49. P. 17483.

9. Kushch S.D., Fursikov P.V., Muradyan V.E., Moravskii A.P., Petrol. Chem. 1997. V. 37. N. 2. P. 112–118.

10. Kushch S.D., Muradyan V.E., Fursikov P.V, Knerelman Eu.I., Kuznetsov V.L. and Butenko Yu.V., Eurasian Chem.-Techn. J., 2001.V.3. N. 2. P. 67-72.

11. Kushch S.D., Fursikov P.V., Kuyunko N.S., Kulikov A.V., Savchenko V.I., Eurasian Chem.-Techn. J., 2001.V.3. N 2. P. 131-139.

12. Egloff G., Schaad R.E., Lowry C.D. Jr., J. Phys. Chem., 1930, V.34, N 8, P.1617–1740.

13. Rabinovich E. Ya., Snegireva T.D., Tesner P.A., Doklady Akad. Nauk SSSR, 1953, V. 88, #1, P. 95-97.

14. Billaud F.G., Baronnet F., Gueret C.P., Ind. Eng. Chem. Res. 1993. V. 32. P. 1549.

Downloads

Published

2001-12-10

How to Cite

Kushch, S. D., Muradyan, V. E., & Kuyunko, N. S. (2001). Methane Conversion over Vacuum Carbon Black: Influence of Hydrogen. Eurasian Chemico-Technological Journal, 3(3), 163–166. https://doi.org/10.18321/ectj560

Issue

Section

Articles

Most read articles by the same author(s)