Survival of a Phosphate Solubilizing Microorganism in Ion-Sterile Carriers

Authors

  • F. Er Selcuk University, Cumra Meslek Yuksekokulu, Cumra-Konya, Turkey
  • M. Ogut Selcuk University, Cumra Meslek Yuksekokulu, Cumra-Konya, Turkey

DOI:

https://doi.org/10.18321/ectj48

Abstract

A cold-tolerant phosphate solubilizing bacterium (PSB) was isolated from roots of ryegrass (Lolium perenne L.). Studies involving phosphate solubilization in liquid culture and survival of the PSB in nonsterile zeolite, leonardite, peat, rock phosphate, and an organic fertilizer were performed. The PSB was able to dissolve 163 ppm P with a simultaneous fall in pH (from 7.7 to 5.7) in Pikovskaya’s medium during a ten-day incubation. The number of PSB declined logarithmically in 28 oC incubation regardless of the carrier. The rate of decrease in PSB population was less pronounced in zeolite. However, the PSB’s population density increased up to 109 cfu g-1, and stayed in the range of 108 to 109 cfu g-1 in zeolite and rock phosphate after 13-weeks of storage at +4 oC. The contaminant microorganisms also grew in the carriers, with population densities ranging between 108 to 109 cfu g-1 at week-9. The suppression of the local microorganisms is required to increase the quality of organic fertilizer by the addition of PSB. Zeolite could be a good carrier, due to its large surface area and porosity, which allow high number of microorganisms to occupy.

References

1. Babu-Khan S, Yeo TC, Martin WL, Duron M, Rogers RD, Goldstein AH et al (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972-978.

2. Chabot R, Beauchamp CJ, Kloepper JW, Antoun H et al (1998) Effect of phosphorus on root colonization and growth promotion of maize by bioluminescent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Soil Biol Biochem 12:1615-1618.

3. ÇakmakçÕ R, Kantar F, Algur ÖF et al (1999) Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J Plant Nutr Soil Sci 162:427-442.

4. Das K, Katiyar V, Reeate G et al (2003) P solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359-362.

5. Gaind S & Gaur AC (2002) Impact of fly ash and phosphate solubilizing bacteria on soybean productivity. Biores Technol 85: 313-315.

6. Goenadi DH, Siswanto, Sugiarto Y et al (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorussolubilizing fungus. Soil Sci Soc Am J 64: 927-932.

7. Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA, Kim KY, Jordan D, Krishnan HB et al (1997) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273-277.

8. Hendershot WH, Lalande H, Duquette M et al (1993) Soil reaction and exchangeable acidity. In: Carter MR (ed) Soil Sampling and Methods of Analysis. Lewis Publishers, London.

9. Katiyar V & Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163-168.

10. Kim KY, Jordan D, Krishnan HB et al (1998) Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol Lett 159: 121-127.

11. Kim KY, McDonald GA, Jordan D et al (1997) Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fertil Soils 24: 347-352.

12. Krishnaraj PU & Goldstein AH (2001) Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiol Lett 205: 215-220.

13. Kumar GN (1999) Involvement of phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett 171: 223-229 .

14. Kumar V & Narula N (1999) Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum mutants. Biol Fertil Soils 28: 301-305.

15. Liu S, Lee L, Tai C, Hung C, Chang Y, Wolfram JH, Rogers R, Goldstein AH et al (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in E. coli HB101: Nucleotide sequence and probable involvement in biosynthesis of the co-enzyme pyrroloquinnoline 7nocula. J Bacteriol 174:5814-5819.

16. Narula N, Kumar V, Behl RK, Deubel A, Gransee A, Merbach W et al (2000) Effect of P- solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. J Plant Nutr Soil Sci 163:393-398.

17. Nautiyal CC (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265-270.

18. Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D et al (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182 : 291-296.

19. Olsen SR, & Sommers LE (1982) Phosphorus. In : Page et al. (ed) Methods of Soil Analysis, Part II: Chemical and Microbiological Properties. SSSA Inc., Madison, WIPal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169-177.

20. Peix A, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazque E et al (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biol Biochem 33:1927-1935.

21. Pickering HW, Menzies NW, Hunter MN et al (2001) Zeolite/rock phosphate-a novel slow release phosphorus fertilizer for potted plant production. Scientia Horticulturae 94:333-343.

22. Rehakova M, Cuvanova S, Dzivak M, Rimar J, Gavalova Z. et al (2004) Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid and Materials Science 8:397-404.

23. Reyes I, Bernier L, Simard RR, Tanguay P, Antoun H et al (1999) Characteristics of phosphate solubilization by an isolate of tropical Penicillium rugulosum and two UVinduced mutants. FEMS Microbiol Ecol 28:291-295.

24. Rodriguez H, Gonzalez T, Goire I, Bashan Y et al (2004) Gluconic acid production and phosphate solubilization by the plant growthpromoting bacterium Azospirillum spp. Naturwissenschaften 91:552-555.

25. Rodriguez H, Gonzales T, Selman G et al (2000) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol. 84:155-161.

26. Rojas A, Holguin G, Glick BR, Bashan Y et al (2001) Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (Psolubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol Ecol 35:181- 187.

27. Seshadri S, Muthukumarasamy R, Lakshminarasimhan C, Ignacimuthu S et al (2000) Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Sci 79:565-567.

28. Sundara B, Natrajan V, Hari K et al (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43-49.

29. Temprano FJ, Albareda M, Camacho M, Daza A, Santamaria C, Nombre Rodriguez-Navarro D et al (2002) Survival of Rhizobium/Bradyrhizobium strains on different noculants formulations and inoculated seeds. Int Microbiol 5:81-86.

30. Tisdale SL, Werner LN, Beaton JD, Havlin JL (1993) Soil fertility and fertilizer. Macmillian Publishing Co., NY.

31. Toro M, Azcon R, Barea J et al (1997) Improvement of arbuscular mycorrhiza development by noculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408-4412.

32. Vassilev N, Toro M, Vassileva M, Azcon R, Barea JS et al (1997) Rock phosphate solubilization by immobilized cells of Enterobacter sp. In fermentation and soil conditions. Biores Technol 61:29-32.

33. Vassileva M, Azcon S, Barea J, Vassilev N et al (1998) Application of an encapsulated filamentous fungus in solubilization of inorganic phosphate. J Biotechnol 63:67-72.

34. Vassileva, M., Azcon, R., Barea, J., Vassilev, N (1999) Effect of encapsulated cells of Enterobacter sp on plant growth and phosphate uptake. Biores Technol 67:229-232.

35. Zuberer DA (1994) Recovery and enumeration of viable bacteria. In: Weaver et al (ed) Methods of Soil Analysis: Part II, Microbiological and Biochemical Properties. SSSA Inc., Madison, WI.

Downloads

Published

2010-11-15

How to Cite

Er, F., & Ogut, M. (2010). Survival of a Phosphate Solubilizing Microorganism in Ion-Sterile Carriers. Eurasian Chemico-Technological Journal, 12(3-4), 219–226. https://doi.org/10.18321/ectj48

Issue

Section

Articles