Hydrogenation of Substituted Fullerenes – a DFT Study

Authors

  • K. Muthukumar Department of chemistry, Indian Institute of Technology Madras, Chennai - 600 036, India
  • M. Sankaran Department of chemistry, Indian Institute of Technology Madras, Chennai - 600 036, India
  • B. Viswanathan Department of chemistry, Indian Institute of Technology Madras, Chennai - 600 036, India

DOI:

https://doi.org/10.18321/ectj603

Abstract

Hydrogen storage by carbon materials is a topic of current interest. In order to exploit fullerenes as one of the new forms of carbon for hydrogen storage, it is shown that an activator for hydrogen is necessary in the fullerene network. Even though one can generate stoichiometric hydrides the formation of such hydrides have to be established. In this present study we have examined what type of species on carbon surfaces may be able to activate hydrogen molecule and lead to hydride formation. The Density Functional Theory calculations have been carried out on some typical model systems wherein the fullerene molecule is substituted in the network with heteroatoms like N, P and S and the reduction in the dissociation energy of hydrogen molecule is considered as a measure of the ability to hydride the carbon materials. On the basis of the reduction in the dissociation energy for the hydrogen molecule it was shown that heteroatom substitution in the fullerene net work may be suitable for the activation and dissociation of hydrogen molecule.

References

(1). S. Hynek, W. Fuller and J. Bentley., Int. J. Hydrogen Energy, 1997, 22, 601.

(2). A. Chambers, C. Parks, R.T.K. Baker and N.M. Rodriguez J. Phys. Chem.B 1998, 102, 4253.

(3). C. Jin, R. Hettich, R. Compton, D. Joyce, J. Blencoe, and T. Burch., J. Phys. Chem. 1994, 98, 4215.

(4). A.G. Avent, A.D. Darwish, D.K. Heimbach, H.W. Kroto, M.F. Meidine, J.P. Parsons, J. Chem.Soc. Perkin Trans. 1994, 2, 15.

(5). S.Yu. Zaginaichenko, D.V. Schur, B.P. Tarasov, V.K. Pishuk, T.N. Veziroglu, Yu.M. Shul'ga, A.G. Dubovoj, N.S. Anikina, A.P. Pomytkin and A.D. Zolotarenko, Int. J. Hydrogen Energy. 2002, 27, 1063.

(6). R.O. Loutfy, and E. M. Wexler, 2001. In Metal Hydrides and Carbon for Hydrogen Storage (Final Report for IEA Task 12) http://www.eren.doe.gov/hydrogen/iea

(7). R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan., J. Phys. Chem. 1990, 94, 8634.

(8). S. Meier, S. Corbin, K.Vance, M.Clayton, and M. Mollman, Tetrahedron Letters, 1994, 35, 5789.

(9). R. Banks, J. Dale, I. Gosney, G. Hodgson, K. Jennings, C. Jones, J. Lecoultre, R. Langridge, P. Maier, H. Scrivens, C. Smith, J. Smyth, T. Taylor, P. Thorburn and S.Webster, J. Chem. Soc., Chem. Commun., 1993, 1149.

(10). I. Attalla, M. Vassallo, N. Tattam and V. Hanna, J. Phys. Chem. 1993, 97, 6329.

(11). L.E. Hall, D.R. McKenzie, M.I. Attalla, A.M.Vassallo, R.L. Davis, J.B. Dunlop et al., J. Phys. Chem. 1993, 97, 5741.

(12). A. Rathna and J. Chandrasekhar, Chem. Phys. Lett. 1993, 206, 217.

(13). C. Hendrson and P. Cahill, Chem. Phys. Lett. 1992, 198, 570.

(14). V. Schur, P. Tarasov, M. Shul'ga, Yu. Zaginaichenko, A. Matysina, P. Pomytkin, Carbon, 2003, 41 1331.

(15). W. Andreoni, F. Gygi, and M. Parrinello, Chem. Phys. Lett. 1992, 190, 159.

(16). N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, and K. Ozawa, Chem. Phys. Lett. 1992, 198, 95.

(17). J. C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, F. Wudl, Science 1995, 269, 1554.

(18). B.Nuber, A. Hirsch, Chem.Comm. 1996, 1421.

(19). Y.V. Vasil'ev, R.R. Abzalimov, R.F. Tuktarov, S.K. Nasibullaev, A. Hirsch, R. Taylor, T. Drewello, Chem. Phys. Lett. 2002, 354, 361.

Downloads

Published

2004-06-28

How to Cite

Muthukumar, K., Sankaran, M., & Viswanathan, B. (2004). Hydrogenation of Substituted Fullerenes – a DFT Study. Eurasian Chemico-Technological Journal, 6(2), 139–143. https://doi.org/10.18321/ectj603

Issue

Section

Articles