Hydrogenation of Substituted Fullerenes – a DFT Study
DOI:
https://doi.org/10.18321/ectj603Abstract
Hydrogen storage by carbon materials is a topic of current interest. In order to exploit fullerenes as one of the new forms of carbon for hydrogen storage, it is shown that an activator for hydrogen is necessary in the fullerene network. Even though one can generate stoichiometric hydrides the formation of such hydrides have to be established. In this present study we have examined what type of species on carbon surfaces may be able to activate hydrogen molecule and lead to hydride formation. The Density Functional Theory calculations have been carried out on some typical model systems wherein the fullerene molecule is substituted in the network with heteroatoms like N, P and S and the reduction in the dissociation energy of hydrogen molecule is considered as a measure of the ability to hydride the carbon materials. On the basis of the reduction in the dissociation energy for the hydrogen molecule it was shown that heteroatom substitution in the fullerene net work may be suitable for the activation and dissociation of hydrogen molecule.
References
(2). A. Chambers, C. Parks, R.T.K. Baker and N.M. Rodriguez J. Phys. Chem.B 1998, 102, 4253.
(3). C. Jin, R. Hettich, R. Compton, D. Joyce, J. Blencoe, and T. Burch., J. Phys. Chem. 1994, 98, 4215.
(4). A.G. Avent, A.D. Darwish, D.K. Heimbach, H.W. Kroto, M.F. Meidine, J.P. Parsons, J. Chem.Soc. Perkin Trans. 1994, 2, 15.
(5). S.Yu. Zaginaichenko, D.V. Schur, B.P. Tarasov, V.K. Pishuk, T.N. Veziroglu, Yu.M. Shul'ga, A.G. Dubovoj, N.S. Anikina, A.P. Pomytkin and A.D. Zolotarenko, Int. J. Hydrogen Energy. 2002, 27, 1063.
(6). R.O. Loutfy, and E. M. Wexler, 2001. In Metal Hydrides and Carbon for Hydrogen Storage (Final Report for IEA Task 12) http://www.eren.doe.gov/hydrogen/iea
(7). R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan., J. Phys. Chem. 1990, 94, 8634.
(8). S. Meier, S. Corbin, K.Vance, M.Clayton, and M. Mollman, Tetrahedron Letters, 1994, 35, 5789.
(9). R. Banks, J. Dale, I. Gosney, G. Hodgson, K. Jennings, C. Jones, J. Lecoultre, R. Langridge, P. Maier, H. Scrivens, C. Smith, J. Smyth, T. Taylor, P. Thorburn and S.Webster, J. Chem. Soc., Chem. Commun., 1993, 1149.
(10). I. Attalla, M. Vassallo, N. Tattam and V. Hanna, J. Phys. Chem. 1993, 97, 6329.
(11). L.E. Hall, D.R. McKenzie, M.I. Attalla, A.M.Vassallo, R.L. Davis, J.B. Dunlop et al., J. Phys. Chem. 1993, 97, 5741.
(12). A. Rathna and J. Chandrasekhar, Chem. Phys. Lett. 1993, 206, 217.
(13). C. Hendrson and P. Cahill, Chem. Phys. Lett. 1992, 198, 570.
(14). V. Schur, P. Tarasov, M. Shul'ga, Yu. Zaginaichenko, A. Matysina, P. Pomytkin, Carbon, 2003, 41 1331.
(15). W. Andreoni, F. Gygi, and M. Parrinello, Chem. Phys. Lett. 1992, 190, 159.
(16). N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, and K. Ozawa, Chem. Phys. Lett. 1992, 198, 95.
(17). J. C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, F. Wudl, Science 1995, 269, 1554.
(18). B.Nuber, A. Hirsch, Chem.Comm. 1996, 1421.
(19). Y.V. Vasil'ev, R.R. Abzalimov, R.F. Tuktarov, S.K. Nasibullaev, A. Hirsch, R. Taylor, T. Drewello, Chem. Phys. Lett. 2002, 354, 361.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.