Use of Onion-Like Carbon to Reinforce Carbon Composites

Authors

  • A. Galiguzov Lomonosov Moscow State University, 1/11, MSU, Leninskie Gory, Moscow, 119991, Russia
  • A. Malakho Lomonosov Moscow State University, 1/11, MSU, Leninskie Gory, Moscow, 119991, Russia
  • S. Minchuk AO «NPO «SPLAV», 33, Shcheglovskaya zaseka , Tula, 300004, Russia
  • L. Oktiabrskaia AO «NPO «SPLAV», 33, Shcheglovskaya zaseka , Tula, 300004, Russia
  • V. Lepin AO «NPO «SPLAV», 33, Shcheglovskaya zaseka , Tula, 300004, Russia

DOI:

https://doi.org/10.18321/ectj722

Abstract

Onion-like carbon reinforced carbon-carbon composite was fabricated, and the influence of onion-like carbon (OLC) on the microstructure and mechanical and friction properties was investigated by porosity analysis, scanning electron microscopy, three-point bending test, nanoindentation test and ring-on-ring friction test. The results show that the sample containing OLC has a higher flexural strength (by 7.3%) and compressive strength (by 29.3%), hardness (by 2.1 times) and apparent density (by 1.1%) and smaller open porosity (7.9% vs 9.8%) and mesoporevolume, which is confirmed by porosity analysis and is attributed to improved fiber/matrix interface performance. The presence of OLC results in higher hardness and elastic modulus of carbon matrix under nanoindentation testing, which leads to modification of friction mechanism and a decrease in the wear rate under friction (by 3.3 times). Besides, OLC particles form self-lubricating film and show a graphitic carbon solid lubricant properties.

References

(1). E. Fitzer, L.M. Manocha, Applications of Carbon/ Carbon Composites. In: Carbon Reinforcements and Carbon/Carbon Composites. Springer, Berlin, Heidelberg; 1998. Crossref DOI: https://doi.org/10.1007/978-3-642-58745-0

(2). S. Awasthi, J.L. Wood, Ceram. Eng. Sci. Proc. 9 (7-8) (1988) 553‒560. Crossref DOI: https://doi.org/10.1002/9780470310496.ch4

(3). P. Morgan, Carbon Fibers and Their Composites. Boca Raton, FL: Taylor & Francis; 2005. Crossref DOI: https://doi.org/10.1201/9781420028744

(4). D.D.L. Chung, Carbon Fiber Composites. Elsevier Inc. 1994. Crossref DOI: https://doi.org/10.1016/C2009-0-26078-8

(5). R. Menendez, J.J. Fernandeza, J. Bermejo, V. Cebolla, I. Mochida, Y. Korai, Carbon 34 (7) (1996) 895‒902. Crossref DOI: https://doi.org/10.1016/0008-6223(96)00044-9

(6). G. Bhatia, R.K. Aggarwal, J. Mater. Sci. 16 (7) (1981) 1757‒1762. Crossref DOI: https://doi.org/10.1007/BF00540621

(7). D. Mikociak, A. Magiera, G. Labojko, S. Blazewicz. J. Anal. Appl. Pyrol. 107 (2014) 191‒196. Crossref DOI: https://doi.org/10.1016/j.jaap.2014.03.001

(8). R.K. Aggarwal, G. Bhatia, O.P. Bahl, J. Mater. Sci. 22 (5) (1987) 1630‒1634. Crossref DOI: https://doi.org/10.1007/BF01132384

(9). E. Yasuda, Y. Tanabe, Carbon 26 (2) (1988) 225‒227. Crossref DOI: https://doi.org/10.1016/0008-6223(88)90041-3

(10). T.J. Kang, Y.W. Jeong, Polym. Polym. Compos. 5 (1997) 469‒475. DOI: https://doi.org/10.1177/147823919700500701

(11). D. Bansal, S. Pillay, U. Vaidya, Carbon 55 (2013) 233‒244. Crossref DOI: https://doi.org/10.1016/j.carbon.2012.12.032

(12). X. Gao, L. Liu, Q. Guo, J. Shi, G. Zhai, Mater. Lett. 59 (2005) 3062‒3065. Crossref DOI: https://doi.org/10.1016/j.matlet.2005.05.021

(13). D.S. Lim, J.W. An, H.J. Lee, Wear 252 (2002) 512‒517. Crossref DOI: https://doi.org/10.1016/S0043-1648(02)00012-1

(14). M. Inagaki, F. Kang, M. Toyoda, H. Konno, Advanced Materials Science and Engineering of Carbon. Oxford: Elsevier Inc.; 2014; p. 109. DOI: https://doi.org/10.1016/B978-0-12-407789-8.00009-0

(15). F. Dillon, K.M. Thomas, H. Marsh, Carbon 31 (8) (1993) 1337‒1348. Crossref DOI: https://doi.org/10.1016/0008-6223(93)90095-R

(16). R. Menendez, E. Casal, M. Granda, Chapter 7, Fibers and Composites (Ed. P. Delhaes), London: Taylor & Francis; 2003.

(17). Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Scripta Mater. 54 (2006) 225‒229. Crossref DOI: https://doi.org/10.1016/j.scriptamat.2005.09.037

(18). V. Kuznetsov, Y. Butenko, Synthesis, Properties and Applications of Ultrananocrystalline Diamond 192 (2005) 199‒216. Crossref DOI: https://doi.org/10.1007/1-4020-3322-2_15

(19). O. Shenderova, C. Jones, V. Borjanovic, S. Hens, G. Cunningham, S. Moseenkov, V. Kuznetsov, G. McGuire, Phys. Stat. Sol. (a) 205 (9) (2008) 2245–2251. Crossref DOI: https://doi.org/10.1002/pssa.200879706

(20). S.A. Rakha, R. Raza, A. Munir, Polym. Composite 34 (6) (2013) 811–818. Crossref DOI: https://doi.org/10.1002/pc.22480

(21). S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity. New York: Academic; 1982.

(22). E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373–380. Crossref DOI: https://doi.org/10.1021/ja01145a126

(23). G. Savage, Carbon-Carbon Composites. Springer Netherlands; 1993. Crossref DOI: https://doi.org/10.1007/978-94-011-1586-5

(24). A. Hirata, M. Igarashi, T. Kaito, Tribol. Int. 37 (11-12) (2004) 899–905. Crossref DOI: https://doi.org/10.1016/j.triboint.2004.07.006

(25). H. Marsh, E.A. Heintz, F. Rodriguez-Reinoso, Introduction to carbon technologies. Alicante: University of Alicante; 1997; p. 624.

(26). S Ozcan, P. Filip, Carbon 62 (2013) 240–247. Crossref DOI: https://doi.org/10.1016/j.carbon.2013.05.061

Downloads

Published

07-09-2018

How to Cite

Galiguzov, A., Malakho, A., Minchuk, S., Oktiabrskaia, L., & Lepin, V. (2018). Use of Onion-Like Carbon to Reinforce Carbon Composites. Eurasian Chemico-Technological Journal, 20(3), 201–208. https://doi.org/10.18321/ectj722

Issue

Section

Article