Carbon Fabric Reinforced Addition-Cure Phenolic Resins Based on Propargyl and Allyl Ether Functional Novolac Produced by Vacuum Infusion

  • S. Nechausov M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119992, Russia
  • B. Bulgakov M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119992, Russia
  • D. Kalugin M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119992, Russia
  • A. Babkin M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119992, Russia
  • A. Kepman M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119992, Russia
  • A. Malakho M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119992, Russia
  • V. Avdeev M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119992, Russia
Keywords: Vacuum infusion, Thermosetting resin, Mechanical properties, Polymer-matrix composites (PMCs)

Abstract

 Composites consisting of propargyl- and allyl/propargyl- modified novolac resins and carbon fabric were obtained by the vacuum infusion molding process. It was established that the presence of potassium cations remaining after the synthesis increase the resin melt viscosity, and acid washing is needed to obtain resins suitable for cost-effective injection techniques of composite fabrication. The mechanical properties of all composites such as compressive strength, tensile strength, in plane shear strength, and interlaminar shear strength were determined at 25, 200 and 230 °С. The carbon fiber reinforced plastics (CFRPs) retained their mechanical properties at temperatures up to 200 °C. It was shown that the use of the obtained allyl-containing polymer matrices improved mechanical properties and increased the thermal stability of the CFRPs in comparison with the propargylated novolac matrices. The composite material with novolac matrices modified by 18% propargyl and 23% allyl groups retains only up to 70% of the initial interlaminar shear strength values at 230 °C which corresponds to the data of the dynamic mechanical analysis of neat cured resins.

References

(1). J. Summerscales, T.J. Searle, Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 219 (2005) 45-48. Crossref

(2). J.C. Fish, S.W. Lee, Eng. Fract. Mech. 34 (1989) 43‒54. Crossref

(3). A.V. Babkin, E.B. Zodbinov, B.A. Bulgakov, A.V. Kepman, V.V. Avdeev, Eur. Polym. J. 66 (2015) 452‒457. Crossref

(4). B.A. Bulgakov, A.V. Sulimov, A.V. Babkin, I.A. Timoshkin, A.V. Solopchenko, A.V. Kepman, V.V. Avdeev. J. Compos. Mater. 51 (2017) 4157‒4164. Crossref

(5). J. Ahmad, Machining of Polymer Composites. Springer, New York, 2009. Crossref

(6). C.P. Reghunadhan Nair, Prog. Polym. Sci. 29 (2004) 401‒408. Crossref

(7). W.E. Douglas, A.S. Overend, Eur. Polym. J. 27 (1991) 1279‒1287. Crossref

(8). M. Wang, L. Wei, T. Zhao, Eur. Polym. J. 41 (2005) 903‒912. Crossref

(9). B. Bulgakov, D. Kalugin, A. Babkin, I. Makarenko, A. Malakho, A. Kepman, V. Avdeev, N. Garadja, A. Rogozin, Can. J. Chem. Eng. 94 (2016) 46. Crossref

(10). B. Bulgakov, A. Babkin, I. Makarenko, N. Tikhonov, D. Kalugin, A. Kepman, A. Malakho, V. Avdeev, Eur. Polym. J. 73 (2015) 247‒258. Crossref

(11). M. Wang, L. Wei, T. Zhao, J. Appl. Polym. Sci. 99 (2006) 1010. Crossref

(12). B.A. Bulgakov, A.V. Sulimov, A.V. Babkin, A.V. Kepman, A.P. Malakho, V.V. Avdeev, J. Appl. Polym. Sci. 133 (2017) 44786. Crossref

(13). D. Augustine, D. Mathew, C.P. Reghunadhan Nair, Polymer 60 (2015) 308‒317. Crossref

(14). D. Augustine, D. Mathew, C.P. Reghunadhan Nair, Eur. Polym. J. 71 (2015) 389‒400. Crossref

(15). D. Kalugin, D. Luchinkin, S. Nechausov, A. Malakho, A. Rogozin, N. Garadja, Polym. Advan. Technol. 27 (2016) 718. Crossref

(16). C.H. Lin, C.M. Huang, T.I. Wong, H.C. Chang, T.Y. Juang, W.C. Su, J. Polym. Sci. Part A: Polym. Chem. 52 (2014) 1359. Crossref

(17). T. Agag, T. Takeichi, Macromolecules 34 (2001) 7257–7263. Crossref

(18). C.P. Reghunadhan Nair, D. Vijayan, C. Gouri Polym. Polym. Compos. 12 (2004) 43–53.

(19). S.S. Nechausov, B.A. Bulgakov, A.V. Solopchenko, A.A. Serdan, D.I. Kalugin, A. Lyalin, A.V. Kepman, A.P. Malakho, J. Polym. Res. 23 (2016) 114. Crossref

(20). S.B. Gibbs, A. Versluis, D. Tantbirojn, S. Ahuja, The Journal of Prosthetic Dentistry 112 (2014) 293‒298. Crossref

(21). J.L. Valentin, J. Carretero-Conzales, I. Mora- Barrantes, W. Chasse, K. Saalwachter, Macromolecules 41 (2008) 4717‒4729. Crossref

(22). R.L. Bindu, C.P. Reghunadhan Nair, K.N. Ninan, Polym. Int. 50 (2011) 651‒658. Crossref

(23). L.W. Flanagin, C.L. McAdams, W.D. Hinsberg, I.C. Sanchez, C.G. Willson, Macromolecules 32 (1999) 5337‒5343. Crossref

(24). S.I. Kargov, L.A. Shelkovnikova, V.A. Ivanov, Russ. J. Phys. Chem. A 86 (2012) 860‒866. Crossref

(25). A.Y. Malkin, I.Y. Gorbunova, M.L. Kerber, Polym. Eng. Sci. 45 (2005) 95‒102. Crossref

(26). F.C. Campbell. Manufacturing processes for advanced composites, 2003, 532 p. Crossref

(27). M. F. Grenier-Loustalot, C. Sanglar, Eur. Polym. J. 33 (1997) 1125‒1134. Crossref

(28). M.F. Grenier-Loustalot, C. Sanglar, High Perform. Polym. 8 (1996) 315‒339. Crossref

(29). J.A. Nairn, Comprehensive Composite Materials 2 (2000) 403‒432. Crossref

Published
2020-06-30
How to Cite
[1]
S. Nechausov, “Carbon Fabric Reinforced Addition-Cure Phenolic Resins Based on Propargyl and Allyl Ether Functional Novolac Produced by Vacuum Infusion”, Eurasian Chem.-Technol. J., vol. 22, no. 2, p. 99‒106, Jun. 2020.
Section
Articles