Carbon Fabric Reinforced Addition-Cure Phenolic Resins Based on Propargyl and Allyl Ether Functional Novolac Produced by Vacuum Infusion
DOI:
https://doi.org/10.18321/ectj956Keywords:
Vacuum infusion, Thermosetting resin, Mechanical properties, Polymer-matrix composites (PMCs)Abstract
Composites consisting of propargyl- and allyl/propargyl- modified novolac resins and carbon fabric were obtained by the vacuum infusion molding process. It was established that the presence of potassium cations remaining after the synthesis increase the resin melt viscosity, and acid washing is needed to obtain resins suitable for cost-effective injection techniques of composite fabrication. The mechanical properties of all composites such as compressive strength, tensile strength, in plane shear strength, and interlaminar shear strength were determined at 25, 200 and 230 °С. The carbon fiber reinforced plastics (CFRPs) retained their mechanical properties at temperatures up to 200 °C. It was shown that the use of the obtained allyl-containing polymer matrices improved mechanical properties and increased the thermal stability of the CFRPs in comparison with the propargylated novolac matrices. The composite material with novolac matrices modified by 18% propargyl and 23% allyl groups retains only up to 70% of the initial interlaminar shear strength values at 230 °C which corresponds to the data of the dynamic mechanical analysis of neat cured resins.
References
(1). J. Summerscales, T.J. Searle, Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 219 (2005) 45-48. Crossref DOI: https://doi.org/10.1243/146442005X10238
(2). J.C. Fish, S.W. Lee, Eng. Fract. Mech. 34 (1989) 43‒54. Crossref DOI: https://doi.org/10.1016/0013-7944(89)90241-5
(3). A.V. Babkin, E.B. Zodbinov, B.A. Bulgakov, A.V. Kepman, V.V. Avdeev, Eur. Polym. J. 66 (2015) 452‒457. Crossref DOI: https://doi.org/10.1016/j.eurpolymj.2015.03.015
(4). B.A. Bulgakov, A.V. Sulimov, A.V. Babkin, I.A. Timoshkin, A.V. Solopchenko, A.V. Kepman, V.V. Avdeev. J. Compos. Mater. 51 (2017) 4157‒4164. Crossref DOI: https://doi.org/10.1177/0021998317699452
(5). J. Ahmad, Machining of Polymer Composites. Springer, New York, 2009. Crossref DOI: https://doi.org/10.1007/978-0-387-68619-6_1
(6). C.P. Reghunadhan Nair, Prog. Polym. Sci. 29 (2004) 401‒408. Crossref DOI: https://doi.org/10.1016/j.progpolymsci.2004.01.004
(7). W.E. Douglas, A.S. Overend, Eur. Polym. J. 27 (1991) 1279‒1287. Crossref DOI: https://doi.org/10.1016/0014-3057(91)90066-W
(8). M. Wang, L. Wei, T. Zhao, Eur. Polym. J. 41 (2005) 903‒912. Crossref DOI: https://doi.org/10.1016/j.eurpolymj.2004.11.036
(9). B. Bulgakov, D. Kalugin, A. Babkin, I. Makarenko, A. Malakho, A. Kepman, V. Avdeev, N. Garadja, A. Rogozin, Can. J. Chem. Eng. 94 (2016) 46. Crossref DOI: https://doi.org/10.1002/cjce.22354
(10). B. Bulgakov, A. Babkin, I. Makarenko, N. Tikhonov, D. Kalugin, A. Kepman, A. Malakho, V. Avdeev, Eur. Polym. J. 73 (2015) 247‒258. Crossref DOI: https://doi.org/10.1016/j.eurpolymj.2015.10.018
(11). M. Wang, L. Wei, T. Zhao, J. Appl. Polym. Sci. 99 (2006) 1010. Crossref DOI: https://doi.org/10.1002/app.22592
(12). B.A. Bulgakov, A.V. Sulimov, A.V. Babkin, A.V. Kepman, A.P. Malakho, V.V. Avdeev, J. Appl. Polym. Sci. 133 (2017) 44786. Crossref DOI: https://doi.org/10.1002/app.44786
(13). D. Augustine, D. Mathew, C.P. Reghunadhan Nair, Polymer 60 (2015) 308‒317. Crossref DOI: https://doi.org/10.1016/j.polymer.2015.01.055
(14). D. Augustine, D. Mathew, C.P. Reghunadhan Nair, Eur. Polym. J. 71 (2015) 389‒400. Crossref DOI: https://doi.org/10.1016/j.eurpolymj.2015.08.013
(15). D. Kalugin, D. Luchinkin, S. Nechausov, A. Malakho, A. Rogozin, N. Garadja, Polym. Advan. Technol. 27 (2016) 718. Crossref DOI: https://doi.org/10.1002/pat.3700
(16). C.H. Lin, C.M. Huang, T.I. Wong, H.C. Chang, T.Y. Juang, W.C. Su, J. Polym. Sci. Part A: Polym. Chem. 52 (2014) 1359. Crossref DOI: https://doi.org/10.1002/pola.27125
(17). T. Agag, T. Takeichi, Macromolecules 34 (2001) 7257–7263. Crossref DOI: https://doi.org/10.1021/ma0107915
(18). C.P. Reghunadhan Nair, D. Vijayan, C. Gouri Polym. Polym. Compos. 12 (2004) 43–53. DOI: https://doi.org/10.1177/096739110401200104
(19). S.S. Nechausov, B.A. Bulgakov, A.V. Solopchenko, A.A. Serdan, D.I. Kalugin, A. Lyalin, A.V. Kepman, A.P. Malakho, J. Polym. Res. 23 (2016) 114. Crossref DOI: https://doi.org/10.1007/s10965-016-1004-7
(20). S.B. Gibbs, A. Versluis, D. Tantbirojn, S. Ahuja, The Journal of Prosthetic Dentistry 112 (2014) 293‒298. Crossref DOI: https://doi.org/10.1016/j.prosdent.2014.02.006
(21). J.L. Valentin, J. Carretero-Conzales, I. Mora- Barrantes, W. Chasse, K. Saalwachter, Macromolecules 41 (2008) 4717‒4729. Crossref DOI: https://doi.org/10.1021/ma8005087
(22). R.L. Bindu, C.P. Reghunadhan Nair, K.N. Ninan, Polym. Int. 50 (2011) 651‒658. Crossref DOI: https://doi.org/10.1002/pi.679
(23). L.W. Flanagin, C.L. McAdams, W.D. Hinsberg, I.C. Sanchez, C.G. Willson, Macromolecules 32 (1999) 5337‒5343. Crossref DOI: https://doi.org/10.1021/ma990271y
(24). S.I. Kargov, L.A. Shelkovnikova, V.A. Ivanov, Russ. J. Phys. Chem. A 86 (2012) 860‒866. Crossref DOI: https://doi.org/10.1134/S0036024412050159
(25). A.Y. Malkin, I.Y. Gorbunova, M.L. Kerber, Polym. Eng. Sci. 45 (2005) 95‒102. Crossref DOI: https://doi.org/10.1002/pen.20234
(26). F.C. Campbell. Manufacturing processes for advanced composites, 2003, 532 p. Crossref DOI: https://doi.org/10.1016/B978-1-85617-415-2.X5000-X
(27). M. F. Grenier-Loustalot, C. Sanglar, Eur. Polym. J. 33 (1997) 1125‒1134. Crossref DOI: https://doi.org/10.1016/S0014-3057(97)00002-5
(28). M.F. Grenier-Loustalot, C. Sanglar, High Perform. Polym. 8 (1996) 315‒339. Crossref DOI: https://doi.org/10.1088/0954-0083/8/3/001
(29). J.A. Nairn, Comprehensive Composite Materials 2 (2000) 403‒432. Crossref DOI: https://doi.org/10.1016/B0-08-042993-9/00069-3