Nanosized Catalysts in the Process of Hydrogenating Acetylene

Authors

  • S. K. Tanirbergenova Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • N. K. Zhylybayeva Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • S. Zh. Tairabekova Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • D. A. Tugelbayeva Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • G. M. Naurzbayeva Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • G. M. Moldazhanova Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • B. A. Mansurov Abai Kazakh National Pedagogical University, 50010, Dostyk аve., 13, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj730

Abstract

Hydrogenating process of the acetylene to ethylene using automated flow catalytic installation at nanoscaled catalysts Ni, Co and carriers at a pressure of 5 atm was studied. The actions of carriers and nanosized catalysts during hydrogenation reaction of acetylene to ethylene at low temperatures in the range from 50–120 °С were analyzed. With ratio of С2Н22 being equal to (1:2), at 80 °С the aluminum oxide carrier exhibits an activity, conversion of acetylene makes up 70%, when using zeolite 3A it is 63%. When the temperature rises to 120 °С, the aluminum activity is decreasing and conversion is 53%. However, zeolite exhibits its activity at high temperatures, at a temperature of 120 °С conversion of acetylene reaches to 73.5%. It is shown that with increasing of hydrogen ratio, the ethylene yield increases from 5 to 10.7% using catalyst 5% Ni/3A. In addition, in reaction of acetylene hydrogenation there are not formed waste products. For this process, the optimum reaction temperature is 80 °С, feedstock ratio (1:3) is positive, where the ethylene yield increased up to 16.7% and at catalyst to 5% Co/3A.

References

(1). C.M. Kruppe, J.D. Krooswyk, M. Trenary, ACS Catal. 7 (2017) 8042–8049. Crossref DOI: https://doi.org/10.1021/acscatal.7b02862

(2). D.V. Glyzdova, N.S. Smirnova, N.N. Leont’eva, E.Yu. Gerasimov, I.P. Prosvirin, V.I. Vershinin, D.A. Shlyapin, P.G. Tsyrul’nikov. Kinet Catal. 58 (2017) 140–146. Crossref DOI: https://doi.org/10.1134/S0023158417020057

(3). Т.N. Afanasenko, N.S. Smirnova, V.L. Temerov, N.N. Leonteva, Т.I. Gulayeva, P.G. Tsirulnikov, Kinet. Catal. 57 (2016) 493–500. Crossref DOI: https://doi.org/10.1134/S0023158416040017

(4). V.V. Chesnokov, A.S. Chichkan, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 649–654. Crossref DOI: https://doi.org/10.1134/S0023158417050020

(5). D.V. Glasgowa, N. Smirnova, D.A. Shlyapin, P.G. Tsyrulnikov, Rossijskij himicheskij zhurnal [Russian chemical journal] 62 (2018) 89–109 (in Russian).

(6). B.Т. Burganov, H.E. Harlampidy, A.A. Jaddoa, Vestnik tehnologicheskogo universiteta [Bulletin of technological university] 18 (2015) 8‒11 (in Russian).

(7). F. Studt, F. Abild-Pedersen, T. Bligaard, R.Z. Sorensen, C.H. Christensen, J.K. Norskov, Science 320 (2008) 1320‒1322. Link DOI: https://doi.org/10.1126/science.1156660

(8). О.О. Mironenko, V.L. Temerev, N.S. Smirnova, N.B. Shitova, D.А. Shlyapin, Т.N. Afonasenko, P.G. Tsirulnikov, Himija v interesah ustojchivogo razvitija [Chemistry for sustainable development] 1 (2016) 41‒47 (in Russian). Crossref DOI: https://doi.org/10.15372/KhUR20160106

(9). L.Z. Kasyanov, R.R. Daminev, O.H. Karimov, E.H. Karimov, D.V. Bakke, M.Yu. Tcherezov, Bashkirskij himicheskij zhurnal [Bashkir Chemical Journal] 23 (2016) 30–33 (in Russian).

(10). V.D. Stytsenko, D.P. Mel’nikov, O.P. Tkachenko, E.V. Savel’eva, A.P. Semenov, L.M. Kustov, Russ. J. Phys. Chem. 92 (2018) 862–869. Crossref DOI: https://doi.org/10.1134/S0036024418050308

Downloads

Published

07-09-2018

How to Cite

Tanirbergenova, S. K., Zhylybayeva, N. K., Tairabekova, S. Z., Tugelbayeva, D. A., Naurzbayeva, G. M., Moldazhanova, G. M., & Mansurov, B. A. (2018). Nanosized Catalysts in the Process of Hydrogenating Acetylene. Eurasian Chemico-Technological Journal, 20(3), 249–254. https://doi.org/10.18321/ectj730

Issue

Section

Articles

Most read articles by the same author(s)