Porous Nickel Based Half-Cell Solid Oxide Fuel Cell and Thin-Film Yttria-Stabilized Zirconia Electrolyte

  • A. G. Umirzakov Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • A. L. Mereke Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • A. A. Shaikenova Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • B. A. Rakhmetov Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • M. A. Yeleuov Satbayev University, 22 Satbaev str., Almaty, Kazakhstan
  • R. E. Beisenov Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • R. Ebrahim University of Houston, Houston, TX 77204-5004, USA
  • B. A. Mansurov Abai Kazakh National Pedagogical University, 13 Dostyk аve., Almaty, Kazakhstan
Keywords: thin-film solid oxide fuel cells, porous anode, pore-forming agent, electrolyte, pulsed laser deposition

Abstract

 In this work, a porous nickel anode for thin-film solid oxide fuel cell prepared by the simple powder hot-pressing method is investigated. Powders of Ni and pore-forming agent (PFA) were thoroughly mixed in different ratios, pressed in a mold and further sintered. The polishing technique with Yttria-Stabilized Zirconia (YSZ) powder has been developed to decrease the surface roughness of Ni-based anode in order to deposit a crack-free electrolyte layer. The 3 μm YSZ thin-film electrolyte was deposited by the pulsed laser deposition technique on the surface of the anode. Morphological and elemental analyses of the samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. X-ray diffraction was used for phase analysis and structural characterization. The specific surface areas of the resulting anodes were calculated from their isotherms of N2 adsorption and desorption using the Sorbtometer and calculated by Brunauer Emmett-Teller (BET) method. As a result, the highest mechanical strength and specific surface area (15.42 m2g-1) possessed a sample with the content of PFA equal to 40%, while its ionic conductivity at 800 °C reached 6. 4∙10-2 S/cm.

References

(1). F. Yu, T. Han, Z. Wang, Y. Xie, Y. Wu, Y. Jin, N. Yang, J. Xiao, S. Kawi, Int. J. Hydrogen Energ. 46 (2021) 4283–4300. Crossref

(2). L. Li, J. Lin, N. Wu, S. Xie, C. Meng, Y. Zheng, X. Wang, Y. Zhao, Energy and Built Environment, In Press, 2020. Crossref

(3). F.R. Sultanov, C. Daulbayev, B. Bakbolat, Z.A. Mansurov, Eurasian Chem.-Technol. J. 20 (2018) 195–200. Crossref

(4). F.R. Sultanov, Ch. Daulbayev, B. Bakbolat, Z.A. Mansurov, A.A. Urazgaliyeva, Rabi Ebrahim, S.S. Pei, Kun-Ping Huang, Carbon Lett. 30 (2020) 81–92. Crossref

(5). B. Yang, Z. Guo, J. Wang, J. Wang, T. Zhu, H. Shu, G. Qiu, J. Chen, J. Zhang, J. Energy Storage 34 (2021) 102153. Crossref

(6). Z. Zeng, Y. Qian, Y. Zhang, C. Hao, D. Dan, W. Zhuge, Appl. Energ. 280 (2020) 115899. Crossref

(7). M. Ma, X. Yang, J. Qiao, W. Sun, Z. Wang, K. Sun, J. Energy Chem. 56 (2021) 209–222. Crossref

(8). A.J. Abd Aziz, N.A. Baharuddin, M.R. Somalu, A. Muchtar, Ceram. Int. 46 (2020) 23314– 23325. Crossref

(9). D. Ding, X. Li, S. Yuxiu Lai, K. Gerdes, M. Liu, Energ. Environ. Sci. 7 (2014) 552–575. Crossref

(10). M.J. Glenn, J.A. Allen, S.W. Donne, J. Power Sources 453 (2020) 227662. Crossref

(11). M. Benamira, A. Ringuedé, V. Albin, R.-N. Vannier, L. Hildebrandt, C. Lagergren, M. Cassir, J. Power Sources 196 (2011) 5546–5554. Crossref

(12). J. Hou, M. Yang, J. Zhang, Renew. Energ. 155 (2020) 1355–1371. Crossref

(13). Y. Prykhodko, K. Fatyeyeva, L. Hespel, S. Marais, Chem. Eng. J. 409 (2021) 127329. Crossref

(14). X. Xu, Y. Xu, J. Ma, Y. Yin, M. Fronzi, X. Wang, L. Bi, J. Power Sources 489 (2021) 229486. Crossref

(15). F.R. Sultanov, B. Bakbolat, Z.A. Mansurov, Eurasian Chem.-Technol. J. 19 (2017) 127–132. Crossref

(16). R.E. Beissenov, A.L. Mereke, A.G. Umirzakov, Z.A. Mansurov, B.A. Rakhmetov, Y.Y. Beisenova, A.A. Shaikenova, D.A. Muratov, Mat. Sci. Semicon. Proc. 121 (2021) 105360. Crossref

(17). C.B. Daulbaev, T.P. Dmitriev, F.R. Sultanov, Z.A. Mansurov, E.T. Aliev, J. Eng. Phys. Thermophys. 90 (2017) 1115–1118. Crossref

(18). M. Agarwal, V. Kumar, S.R.K. Malladi, R. Balasubramaniam, K. Balani, JOM 62 (2010) 88–92. Crossref

(19). X. Lv, H. Chen, W. Zhou, F. Cheng, S.-D. Li, Z. Shao, Renew. Energ. 150 (2020) 334–341. Crossref

(20). J.W. Fergus, Solid State Ionics 177 (2006) 1529–1541. Crossref

(21). R. Ebrahim, M. Yeleuov, A. Ignatiev, Adv. Mater. Technol. 2 (2017). Crossref

(22). Z. Zakaria, S.H. Abu Hassan, N. Shaari, A.Z. Yahaya, Y. Boon Kar, Int. J. Energ. Res. 44 (2019) 631–650. Crossref

(23). H. Hidalgo, E. Reguzina, E. Millon, A.-L. Thomann, J. Mathias, C. Boulmer-Leborgne, T. Sauvage, P. Brault, Surf. Coat. Tech. 205 (2011) 4495–4499. Crossref

(24). A. Nenning, M. Gerstl, M. Bram, A.K. Opitz, ECS Trans. 91 (2019) 479–490. Crossref

(25). A. Hauch, M. Mogensen, Solid State Ionics 181 (2010) 745–753. Crossref

(26). A. Buyukaksoy, V. Birss, ECS Trans. 66 (2015) 253–265. Crossref

(27). Sam Zhang, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, Chapter 5: Thin Coating Technologies and Applications in High-Temperature Solid Oxide Fuel Cells, 1st Edition, 2010, CRC Press. Crossref

(28). P. Holtappels, C. Sorof, M.C. Verbraeken, S. Rambert, U. Vogt, Fuel Cells 6 (2006) 113–116. Crossref

(29). J.J. Haslam, A.-Q. Pham, B.W. Chung, J.F. DiCarlo, R.S. Glass, J. Am. Ceram. Soc. 88 (2005) 513–518. Crossref

(30). K.S. Walton, R.Q. Snurr, J. Am. Chem. Soc. 129 (2007) 8552–8556. Crossref

(31). C. Suciu, E. Dorolti, A.C. Hoffmann, Mater. Sci. Energy Technol. 1 (2018) 136–145. Crossref

Published
2021-03-25
How to Cite
[1]
A. Umirzakov, “Porous Nickel Based Half-Cell Solid Oxide Fuel Cell and Thin-Film Yttria-Stabilized Zirconia Electrolyte”, Eurasian Chem.-Technol. J., vol. 23, no. 1, pp. 9-17, Mar. 2021.
Section
Articles