Porous Nickel Based Half-Cell Solid Oxide Fuel Cell and Thin-Film Yttria-Stabilized Zirconia Electrolyte

Authors

  • A. G. Umirzakov Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • A. L. Mereke Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • A. A. Shaikenova Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • B. A. Rakhmetov Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • M. A. Yeleuov Satbayev University, 22 Satbaev str., Almaty, Kazakhstan
  • R. E. Beisenov Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Institute of Physics and Technology, 11 Ibragimova str., Almaty, Kazakhstan
  • R. Ebrahim University of Houston, Houston, TX 77204-5004, USA
  • B. A. Mansurov Abai Kazakh National Pedagogical University, 13 Dostyk аve., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1029

Keywords:

thin-film solid oxide fuel cells, porous anode, pore-forming agent, electrolyte, pulsed laser deposition

Abstract

 In this work, a porous nickel anode for thin-film solid oxide fuel cell prepared by the simple powder hot-pressing method is investigated. Powders of Ni and pore-forming agent (PFA) were thoroughly mixed in different ratios, pressed in a mold and further sintered. The polishing technique with Yttria-Stabilized Zirconia (YSZ) powder has been developed to decrease the surface roughness of Ni-based anode in order to deposit a crack-free electrolyte layer. The 3 μm YSZ thin-film electrolyte was deposited by the pulsed laser deposition technique on the surface of the anode. Morphological and elemental analyses of the samples were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. X-ray diffraction was used for phase analysis and structural characterization. The specific surface areas of the resulting anodes were calculated from their isotherms of N2 adsorption and desorption using the Sorbtometer and calculated by Brunauer Emmett-Teller (BET) method. As a result, the highest mechanical strength and specific surface area (15.42 m2g-1) possessed a sample with the content of PFA equal to 40%, while its ionic conductivity at 800 °C reached 6. 4∙10-2 S/cm.

References

(1). F. Yu, T. Han, Z. Wang, Y. Xie, Y. Wu, Y. Jin, N. Yang, J. Xiao, S. Kawi, Int. J. Hydrogen Energ. 46 (2021) 4283–4300. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.10.259

(2). L. Li, J. Lin, N. Wu, S. Xie, C. Meng, Y. Zheng, X. Wang, Y. Zhao, Energy and Built Environment, In Press, 2020. Crossref DOI: https://doi.org/10.1016/j.enbenv.2020.12.002

(3). F.R. Sultanov, C. Daulbayev, B. Bakbolat, Z.A. Mansurov, Eurasian Chem.-Technol. J. 20 (2018) 195–200. Crossref DOI: https://doi.org/10.18321/ectj721

(4). F.R. Sultanov, Ch. Daulbayev, B. Bakbolat, Z.A. Mansurov, A.A. Urazgaliyeva, Rabi Ebrahim, S.S. Pei, Kun-Ping Huang, Carbon Lett. 30 (2020) 81–92. Crossref DOI: https://doi.org/10.1007/s42823-019-00073-5

(5). B. Yang, Z. Guo, J. Wang, J. Wang, T. Zhu, H. Shu, G. Qiu, J. Chen, J. Zhang, J. Energy Storage 34 (2021) 102153. Crossref DOI: https://doi.org/10.1016/j.est.2020.102153

(6). Z. Zeng, Y. Qian, Y. Zhang, C. Hao, D. Dan, W. Zhuge, Appl. Energ. 280 (2020) 115899. Crossref DOI: https://doi.org/10.1016/j.apenergy.2020.115899

(7). M. Ma, X. Yang, J. Qiao, W. Sun, Z. Wang, K. Sun, J. Energy Chem. 56 (2021) 209–222. Crossref DOI: https://doi.org/10.1016/j.jechem.2020.08.013

(8). A.J. Abd Aziz, N.A. Baharuddin, M.R. Somalu, A. Muchtar, Ceram. Int. 46 (2020) 23314– 23325. Crossref DOI: https://doi.org/10.1016/j.ceramint.2020.06.176

(9). D. Ding, X. Li, S. Yuxiu Lai, K. Gerdes, M. Liu, Energ. Environ. Sci. 7 (2014) 552–575. Crossref DOI: https://doi.org/10.1039/c3ee42926a

(10). M.J. Glenn, J.A. Allen, S.W. Donne, J. Power Sources 453 (2020) 227662. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2019.227662

(11). M. Benamira, A. Ringuedé, V. Albin, R.-N. Vannier, L. Hildebrandt, C. Lagergren, M. Cassir, J. Power Sources 196 (2011) 5546–5554. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2011.02.004

(12). J. Hou, M. Yang, J. Zhang, Renew. Energ. 155 (2020) 1355–1371. Crossref DOI: https://doi.org/10.1016/j.renene.2020.04.002

(13). Y. Prykhodko, K. Fatyeyeva, L. Hespel, S. Marais, Chem. Eng. J. 409 (2021) 127329. Crossref DOI: https://doi.org/10.1016/j.cej.2020.127329

(14). X. Xu, Y. Xu, J. Ma, Y. Yin, M. Fronzi, X. Wang, L. Bi, J. Power Sources 489 (2021) 229486. Crossref DOI: https://doi.org/10.1016/j.jpowsour.2021.229486

(15). F.R. Sultanov, B. Bakbolat, Z.A. Mansurov, Eurasian Chem.-Technol. J. 19 (2017) 127–132. Crossref DOI: https://doi.org/10.18321/ectj286

(16). R.E. Beissenov, A.L. Mereke, A.G. Umirzakov, Z.A. Mansurov, B.A. Rakhmetov, Y.Y. Beisenova, A.A. Shaikenova, D.A. Muratov, Mat. Sci. Semicon. Proc. 121 (2021) 105360. Crossref DOI: https://doi.org/10.1016/j.mssp.2020.105360

(17). C.B. Daulbaev, T.P. Dmitriev, F.R. Sultanov, Z.A. Mansurov, E.T. Aliev, J. Eng. Phys. Thermophys. 90 (2017) 1115–1118. Crossref DOI: https://doi.org/10.1007/s10891-017-1665-z

(18). M. Agarwal, V. Kumar, S.R.K. Malladi, R. Balasubramaniam, K. Balani, JOM 62 (2010) 88–92. Crossref DOI: https://doi.org/10.1007/s11837-010-0095-6

(19). X. Lv, H. Chen, W. Zhou, F. Cheng, S.-D. Li, Z. Shao, Renew. Energ. 150 (2020) 334–341. Crossref DOI: https://doi.org/10.1016/j.renene.2019.12.126

(20). J.W. Fergus, Solid State Ionics 177 (2006) 1529–1541. Crossref DOI: https://doi.org/10.1016/j.ssi.2006.07.012

(21). R. Ebrahim, M. Yeleuov, A. Ignatiev, Adv. Mater. Technol. 2 (2017). Crossref DOI: https://doi.org/10.1002/admt.201700098

(22). Z. Zakaria, S.H. Abu Hassan, N. Shaari, A.Z. Yahaya, Y. Boon Kar, Int. J. Energ. Res. 44 (2019) 631–650. Crossref DOI: https://doi.org/10.1002/er.4944

(23). H. Hidalgo, E. Reguzina, E. Millon, A.-L. Thomann, J. Mathias, C. Boulmer-Leborgne, T. Sauvage, P. Brault, Surf. Coat. Tech. 205 (2011) 4495–4499. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2011.03.077

(24). A. Nenning, M. Gerstl, M. Bram, A.K. Opitz, ECS Trans. 91 (2019) 479–490. Crossref DOI: https://doi.org/10.1149/09101.0479ecst

(25). A. Hauch, M. Mogensen, Solid State Ionics 181 (2010) 745–753. Crossref DOI: https://doi.org/10.1016/j.ssi.2010.04.001

(26). A. Buyukaksoy, V. Birss, ECS Trans. 66 (2015) 253–265. Crossref DOI: https://doi.org/10.1149/06602.0253ecst

(27). Sam Zhang, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, Chapter 5: Thin Coating Technologies and Applications in High-Temperature Solid Oxide Fuel Cells, 1st Edition, 2010, CRC Press. Crossref DOI: https://doi.org/10.1201/b11846

(28). P. Holtappels, C. Sorof, M.C. Verbraeken, S. Rambert, U. Vogt, Fuel Cells 6 (2006) 113–116. Crossref DOI: https://doi.org/10.1002/fuce.200500116

(29). J.J. Haslam, A.-Q. Pham, B.W. Chung, J.F. DiCarlo, R.S. Glass, J. Am. Ceram. Soc. 88 (2005) 513–518. Crossref DOI: https://doi.org/10.1111/j.1551-2916.2005.00097.x

(30). K.S. Walton, R.Q. Snurr, J. Am. Chem. Soc. 129 (2007) 8552–8556. Crossref DOI: https://doi.org/10.1021/ja071174k

(31). C. Suciu, E. Dorolti, A.C. Hoffmann, Mater. Sci. Energy Technol. 1 (2018) 136–145. Crossref DOI: https://doi.org/10.1016/j.mset.2018.06.007

Downloads

Published

25-03-2021

How to Cite

Umirzakov, A. G., Mereke, A. L., Shaikenova, A. A., Rakhmetov, B. A., Yeleuov, M. A., Beisenov, R. E., … Mansurov, B. A. (2021). Porous Nickel Based Half-Cell Solid Oxide Fuel Cell and Thin-Film Yttria-Stabilized Zirconia Electrolyte. Eurasian Chemico-Technological Journal, 23(1), 9–17. https://doi.org/10.18321/ectj1029

Issue

Section

Articles

Most read articles by the same author(s)