Combustion Study of Different Transitional Metal Oxide based on AN/MgAl Composites Gas Generators
DOI:
https://doi.org/10.18321/ectj682Keywords:
ammonium nitrate (AN); composite gas generator; burning characteristics; transitional metal oxide; MgAl mechanical alloyAbstract
Ammonium nitrate (AN)-based composite gas generator have attracted a considerable amount of attention because of the clean burning nature of AN as an oxidizer. However, ammonium nitrate-based gas generator has several major problems, namely, poor ignitability, a low burning rate, low energy, and high hygroscopicity. The addition of different transitional metal oxides and MgAl mechanical alloyed proved to be effective in improving the burning characteristics of AN-based gas generator. In this research work, combustion study of different transition metal oxide based on AN/MgAl composites gas generators was studied. Gas generators were combusted at the pressure of 1 MPa, 3 MPa and 5 MPa in the combustion chamber and the burning rates were determined. It was stated that the addition of metal oxides into the composition of the gas generators improves ignition at low pressure and increases the burning rate. The use of the mechanical MgAl alloys as a fuel allowed the ignition of the gas generator at a lower temperature. The method of thermogravimetric/differential thermal analyzer (TG/DTA) was used to investigate the effect of metal oxides addition on the AN/MgAl-based gas generators thermal decomposition characteristics.
References
[2]. T. Naya, M. Kohga, Aerosp. Sci. Technol. 27 (1) (2013) 209‒215. <A HREF=«HTTPS://DOI.ORG/10.1016/j.ast.2012.08.012">Crossref</a>
[3]. H. Habu and K. Hori, Journal Science and Technology of Energetic Materials 67 (6) (2006) 187‒192.
[4]. S.R. Chakravarthy, J.M. Freeman, E.W. Price, R.K. Sigman, Propellants Explos. Pyrotech.29 (4) (2004) 220‒230. <A HREF=«HTTPS://DOI.ORG/10.1002/prep.200400053">Crossref</a>
[5]. G.B. Manelis and D.B. Lempert, Progress in Propulsion Physics 1 (2009) 81‒96. <A HREF=«HTTPS://DOI.ORG/10.1051/eucass/200901081">Crossref</a>
[6]. S. Levi, D. Signoriello, A. Gabardi, M. Molinari, L. Galfetti, L.T. DeLuca, S. Cianfanelli, and G.F. Klyakin, Progress in Propulsion Physics 1 (2009) 97‒108. <A HREF=«HTTPS://DOI.ORG/10.1051/eucass/200901097">Crossref</a>
[7]. S. Ganesan, Dr.B.T.N. Sridhar, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 14 (04) (2014) 110‒115. Paper ID: 147004-3838-IJMMEIJENS
[8]. M. Kohga and K. Okamoto, Combust. Flame 158 (3) (2011) 578–582. <A HREF=«HTTPS://DOI.ORG/10.1016/j.combustflame.2010.10.009">Crossref</a>
[9]. Yasmine Aly, Mirko Schoenitz, Edward L.Dreizin, Combust. Flame 160 (2013) 835–842.
<A HREF=«HTTPS://DOI.ORG/10.1016/j.combustflame.2012.12.011">Crossref</a>
[10]. H. Murata, Y. Azuma, T. Tohara, M. Simoda, T. Yamaya, K. Hori, and T. Saito, Journal Science and Technology of Energetic Materials 61 (2) (2000) 58–66.
[11]. Y.L. Shoshin, R.S. Mudryy, and E.L. Dreizin, Combust. Flame 128 (3) (2002) 259–269. <A HREF=«HTTPS://DOI.ORG/10.1016/S0010-2180(01)00351-0">Crossref</a>
[12]. Hiroto Habu and Keiichi Hori, Journal Science and Technology of Energetic Materials 67 (6) (2006) 187‒192.
[13]. Y. Aly, M. Schoenitz, and E.L. Dreizin,Combust. Flame 160 (4) (2013) 835‒842. <A HREF=«HTTPS://DOI.ORG/10.1016/j.combustflame.2012.12.011">Crossref</a>
[14]. K. Kamunur, J.M. Jandosov, R.G. Abdulkarimova, K. Hori, M.K. Atamanov, Z.A. Mansurov, Combustion and Plasma Chemistry 14 (3) (2016) 189‒194 (in Russian).
[15]. M. Kohga and S. Nishino, Propellants, Explosives, Pyrotechnics 34 (4) (2009) 340–346. <A HREF=«HTTPS://DOI.ORG/10.1002/prep.200800060">Crossref</a>
[16]. Vesna Rodić, Scientific Technical Review 62 (3-4) (2012) 21‒27.
[17]. Tomoki Naya and Makoto Kohga, Propellants explosive, pyrothec. 38 (2013) 87–94. <A HREF=«HTTPS://DOI.ORG/10.1002/prep.201200060">Crossref</a>
[18]. Tomoki Naya and Makoto Kohga, Propellants, Explosives, Pyrotechnics 38 (4) (2013) 547–554.
<A HREF=«HTTPS://DOI.ORG/10.1002/prep.201200159">Crossref</a>
[19]. Makoto Kohga, Tomoki Naya, J. Energ. Mater. 33 (4) (2015) 288‒304. <A HREF=«HTTPS://DOI.ORG/10.1080/07370652.2014.988775">Crossref</a>
[20]. Jin-Kyu Lee and Shae K. Kim, Mater. Trans. 52 (7) (2011) 1483‒1488. <A HREF=«HTTPS://DOI.ORG/10.2320/matertrans.M2010397">Crossref</a>
[21].Karen S. Martirosyan, Lei zheng Wang, Arol Vicent, Dan Luss, Propellants, Explosives, Pyrotechnics 34 (6) (2009). 532–538. <A HREF=«HTTPS://DOI.ORG/10.1002/prep.200800059">Crossref</a>
[22].Guoqiang Jian, Jingyu Feng, Rohit J. Jacob, Garth C. Egan, and Michael R. Zachariah, Angew. Chem. Int. Edit. 52 (2013) 1–5. <A HREF=«HTTPS://DOI.ORG/10.1002/anie.201303545">Crossref</a>
[23]. Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Kyung Tae Kim, and Soo Hyung Kim, ACS Appl. Mater. Interfaces 8 (14) (2016) 9405–9412. <A HREF=«HTTPS://DOI.ORG/10.1021/acsami.6b00070">Crossref</a>
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.