Combustion Characteristics of HAN-based Green Propellant Assisted with Nanoporous Active Carbons

Authors

  • M. K. Atamanov Institute of Combustion Problems, Bogenbay batyr ave. 172, Almaty; al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • R. Amrousse University of Chouaïb Doukkali, Faculty of Sciences, 24000 El Jadida, Morocco; ISAS/JAXA, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai Chuo-ku, Sagamihara 252-5210, Kanagawa, Japan
  • J. Jandosov Institute of Combustion Problems, Bogenbay batyr ave. 172, Almaty; al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • K. Hori ISAS/JAXA, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai Chuo-ku, Sagamihara 252-5210, Kanagawa, Japan
  • A. R. Kerimkulova Institute of Combustion Problems, Bogenbay batyr ave. 172, Almaty; al-Farabi Kazakh National University, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • D. I. Chenchik Institute of Combustion Problems, Bogenbay batyr ave. 172, Almaty, Kazakhstan https://orcid.org/0000-0001-6325-9982
  • B. Y. Kolesnikov Institute of Combustion Problems, Bogenbay batyr ave. 172, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj665

Keywords:

combustion, hydroxylammonium nitrate, activated carbon, burning rate, thermal analysis, mass spectrometry

Abstract

Combustion of hydroxylammonium nitrate (95 wt.% HAN) ‒ water solution in presence of high specific surface area activated carbons is investigated in a constant-pressure bomb within the pressure range of 1‒6 MPa. The linear burning rate increased for the system of HAN admixed with activated carbons compared to those of the HAN alone. Moreover, the thermal decomposition of HAN (95 wt.%) ‒ water solution spiked with activated carbons was assessed by DTA – TG method. In the presence of activated carbons, the ability to trigger the decomposition at a lower temperature (86 °C vs 185 °C) was observed. The volatile products formed in the course of thermal decomposition of HAN, spiked with activated carbons were characterized by electron ionization mass spectrometry analysis. Primary products of HAN decomposition: m/z = 33 (NH2OH) and m/z = 63 (HNO3), which are further responsible for the formation of secondary products such as N2O, NO, HNO2, NO2, O2 etc. Significant reduction of NOemissions during thermal decomposition of HAN (95 wt.%) ‒ water solution was observed (ca. 30%) in presence of activated carbons.

 

References

[1]. R. Amrousse, T. Katsumi, N. Itouyama, N. Azuma, H. Kagawa, K. Hatai, H. Ikeda, K. Hori, Combust. Flame 162 (2015) 2686‒2692. <a href="https://doi.org/10.1016/j.combustflame.2015.03.026">Crossref</a>

[2]. R. Amroussea, K. Horia, W. Fetimi, K. Farhatc, Appl. Catal. B 127 (2012) 121–128. <a href="https://doi.org/10.1016/j.apcatb.2012.08.009">Crossref</a>

[3]. W.F. Oberle, G.P. Wren, Closed chamber combustion rates of liquid propellant 1846 conditioned ambient, hot and cold vulnerability testing of liquid propellant LGP 1846. Proc. 27th JANNAF Combustion Subcommittee Meeting, 557 (1990) 377‒385.

[4]. W.F. Oberle, G.P. Wren, Burn Rates of LGP 1846 Conditioned Ambient, Hot, and Cold. Army Ballistic research laboratory, technical report no. BRL-TR-3287, 1991, USA (1991).

[5]. S.T. Jennings, Y. Chang, D. Koch, K.K. Kuo, Peculiar combustion characteristics of XM46 liquid propellant. Proc. 34th JANNAF Combustion Subcommittee Meeting, FL, USA. 1 (662) (1997) 321–331.

[6]. J.L. Sabourin, D.M. Dabbs, R.A. Yetter, F.L. Dryer and I.A. Aksay, ACS Nano 3 (12) (2009) 3945–3954. <a href="https://doi.org/10.1021/nn901006w">Crossref</a>

[7]. M. Atamanov, I. Noboru, T. Shotaro, R. Am¬rousse, M. Tulepov, A. Kerimkulova, M. Ho¬bosyan, K. Hori, K. Martirosyan, Z. Mansurov, Combust. Sci. Technol. 188 (2016) 2003–2011. <a href="https://doi.org/10.1080/00102202.2016.1220143">Crossref</a>

[8]. M.K. Atamanov, I. Noboru, T. Shotaro, R. Amrousse, K. Hori, Y. Aliyev, Z.A. Mansurov. The process of combustion and thermal analysis system of ammonium nitrate and carbonized rice husk. Proc. VIII Int. Symp. "Combustion and plasmachemistry", Almaty, Kazakhstan (2015) p. 243–245.

[9]. V.V Barzykin, Gorenie i plazmohimija [Combustion and Plasmachemistry] 2 (4) (2004) 275‒292 (in Russian).

[10]. B.N. Kondrikov, V.É. Annikov, V.Yu. Egorshev, L.T. De Luca, Combust. Explo. Shock 36 (2000) 135–145. <a href="https://doi.org/10.1007/BF02701522">Crossref</a>

[11]. T. Katsumi, H. Kodama, H. Shibamoto, J. Nakatsuka, K. Hasegawa, K. Kobayashi, H. Ogawa, N. Tsuboi, Sh. Sawai, K. Hori, Int. J. Energ. Mater. Chem. Propuls. 7 (2008) 123–137. <a href="https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v7.i2.30">Crossref</a>

[12]. T. Katsumi, R. Matsuda, T. Inoue, N. Tsuboi, H. Ogawa, Sh. Sawai, K. Hori , Int. J. Energ. Mater. Chem. Propuls 9 (2010) 219–231. <a href="https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v9.i3.30">Crossref</a>

[13]. Y. Qiu, Z. Wang, A.C. Owens, I. Kulaots, Y. Chen, A.B. Kane, R.H. Hurt. Nanoscale 6 (20) (2014) 11744–11755. <a href="https://doi.org/10.1039/c4nr03275f">Crossref</a>

[14]. T.B. Brill, T.P. Russell, Proc. SPIE. 0872 (1988) 40‒43. <a href="https://doi.org/10.1117/12.943751">Crossref</a>

[15]. Y.J. Lee, T.A. Litzinger, Combust. Sci. Technol. 141 (1999) 19–36.
<a href="https://doi.org/10.1080/00102209908924180">Crossref</a>

[16]. Charlie Oommen, Santhosh Rajaraman, R. Arun Chandru and R. Rajeev, Catalytic Decomposition of Hydroxylammonium Nitrate Monopropellant. Int. Conf. Chemistry and Chemical Process IPCBEE, Singapore (2011) 205–209.

[17]. R. Amrousse, T. Katsumi, T. Sulaiman, B.R. Das, H. Kumagai, K. Maeda, K. Hori, Inter. J. Energy Mater. Chem. Propul. 11. (2012) 241–257. <a href="https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2012004978">Crossref</a>

[18]. M. Atamanov, K. Hori, R. Amrousse, A. Kerimkulova, J. Jandosov, Z. Mansurov. Effect of KOH-activated rice husk on thermal decomposition of hydroxylamine nitrate monopropellant. Proc. 9th Int. Seminar on flame structure, pp. 32, July 10-14, 2017, Novosibirsk, Russia.

[19]. M. Atamanov, K. Hori, E. Aliyev, R. Amrousse, Z. Mansurov. Experimental Investigations of Combustion Enhancement of HAN-Based Green Propellant with K2CO3‒Activated Carbon. International Colloquium on the dynamics of explosion and reactive systems (1063), Boston, USA, 2017

[20]. Ya.B. Zel'dovich, P.Ya. Sadovnikov, D.A. Frank-Kamenetsky, Oxidation of nitrogen during combustion. Publishing house of the USSR academy of Sciences, Moscow, 1947. p. 145.

[21]. H.S. Lee, T.A. Litzinger, Combust. Flame 135 (2003) 151–169. <a href="https://doi.org/10.1016/S0010-2180(03)00157-3">Crossref</a>

[22]. A.P. Sanoop, R. Rajeev, B.K. George, Thermochim. Acta 606 (2015) 34–40. <a href="https://doi.org//10.1016/j.tca.2015.03.006">Crossref</a>

[23]. K. Kaneko, Langmuir 3 (1987) 357–363. <a href="https://doi.org/10.1021/la00075a014">Crossref</a>

[24]. H. Teng, E.M. Suuberg, Ind. Eng. Chem. Res. 32 (1993) 416–423. <a href="https://doi.org/10.1021/ie00015a004">Crossref</a>

[25]. W.J. Zhang, S. Rabiei, A. Bagreev, M. Zhuang, F. Rasouli, Appl. Catal. (2008) 63–71. <a href="https://doi.org/10.1016/j.apcatb.2008.02.003">Crossref</a>

Downloads

Published

2017-09-15

How to Cite

Atamanov, M. K., Amrousse, R., Jandosov, J., Hori, K., Kerimkulova, A. R., Chenchik, D. I., & Kolesnikov, B. Y. (2017). Combustion Characteristics of HAN-based Green Propellant Assisted with Nanoporous Active Carbons. Eurasian Chemico-Technological Journal, 19(3), 215–222. https://doi.org/10.18321/ectj665

Issue

Section

Articles

Most read articles by the same author(s)