Propulsion Systems, Propellants, Green Propulsion Subsystems and their Applications: A Review

Authors

  • I. Remissa University of Chouaïb Doukkali, Faculty of Sciences, 24000 El Jadida, Morocco
  • H. Jabri University of Chouaïb Doukkali, Faculty of Sciences, 24000 El Jadida, Morocco
  • Y. Hairch University of Chouaïb Doukkali, Faculty of Sciences, 24000 El Jadida, Morocco
  • K. Toshtay Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • M. Atamanov Al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • S. Azat Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • R. Amrousse University of Chouaïb Doukkali, Faculty of Sciences, 24000 El Jadida, Morocco

DOI:

https://doi.org/10.18321/ectj1491

Keywords:

Propulsion, Green propellants, Specific impulse, Hydrazine, Ammonium perchlorate, Rocket, Satellite

Abstract

A wide range of propellants, and propulsion systems in space exploration by aircrafts or space vehicles was studied, developed, investigated, and commercialized. Liquid, solid, or hybrid propellants have been used for rocket’s launches. In this review, a consistent definition of space propulsion systems, including solid, liquid and hybrid has been given with up-to-date state of developments. A comparison of their performances was made by theoretical and experimental specific impulses. On the other hand, ammonium perchlorate and hydrazine were used as propellants for rocket’s launches and for satellite’s maneuverings; respectively. However, their high toxicity and their storage problem pushed researchers and scientists to investigate and develop other eco-friendly, propellant systems, so called “green propellants”, for launch or reaction control systems of satellites.

References

(1). A. Mayer, W. Wieling, Transactions of the Institute of Aviation 4 (2018) 1–24. Crossref DOI: https://doi.org/10.2478/tar-2018-0026

(2). Learning Module 1. Major Parts of Rocket System. URL

(3). A.E.S. Nosseir, A. Cervone, A. Pasini, Aerospace 8 (2021). Crossref DOI: https://doi.org/10.3390/aerospace8010020

(4). Replacing hydrazine fuel with a greener alternative. URL

(5). A.J. Musker, Highly stabilised hydrogen peroxide as a rocket propellant, 39th AIAA/ ASME/SAE/ASEE 2003-4619, JPC Exhib. (2003). Crossref DOI: https://doi.org/10.2514/6.2003-4619

(6). J. Clark, Ignition ‒ An Informal History of Liquid Rocket Propellants, Rutgers University Press, New Brunswick, 1972.

(7). M. Rycroft, the Cambridge encyclopedia of space, Cambridge University Press, 1990.

(8). K.W. Gatland, The Illustrated Encyclopedia of Space Technology, 1989.

(9). NASA Tests Methane-Powered Engine Components for Next Generation Landers. URL

(10). B.M. Nufer, Hypergolic Propellants: The Handling Hazards and Lessons Learned from Use. (2010). URL

(11). A. Lilholt, the Book on Rocket Science. Lulu. com; First Edition, 2014.

(12). C. Kappenstein, L. Courthéoux, R. Eloirdi, S. Rossignol, et al., Catalytic decomposition of HAN-water binary mixtures, 38th AIAA/ASME/ SAE/ASEE Jt. Propuls. Conf. 2012, Indianapolis, Indiana. Crossref DOI: https://doi.org/10.2514/6.2002-4027

(13). The Inertial Upper Stage: Space Workhorse Boosts Chandra X-ray Observatory. URL

(14). A. Musker, G. Roberts, P. Chandler, J. Grayson, J. Holdsworth, (2004) Optimisation study of a homogeneously-catalysed HTP rocket engine. Wilson, A. (ed.) In Proceedings of the 2nd International Conference on Green Propellants for Space Propulsion. ESA. URL

(15). A.J. Musker, G.T. Roberts, (2006) An exploratory study of some liquid catalysts for use with hydrogen peroxide. 3rd International Conference on Green Propellants, Poitiers, France, 2006. URL

(16). Hybrid Rocket Propulsion Overview. URL

(17). Final Report Summary - GRASP (Green advanced space propulsion). URL

(18). J. Becklake, The British Black Knight Rocket. Journal of the BIS 43 (1990) 283–290. URL

(19). M. Ventura, E. Wernimont, S. Heister, S. Yuan, Rocket Grade Hydrogen Peroxide (RGHP) for use in propulsion and power devices ‒ Historical discussion of hazards, Collect. Tech. Pap. 43rd AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. 5 (2007). Crossref DOI: https://doi.org/10.2514/6.2007-5468

(20). M.C. Ventura, Long term storability of hydrogen peroxide, 41st AIAA/ASME/SAE/ ASEE Jt. Propuls. Conf. Exhib. (2005). Crossref DOI: https://doi.org/10.2514/6.2005-4551

(21). Hydrogen peroxide. URL

(22). K.A. Connors, Chemical Kinetics: The Study of Reaction Rates in Solution, 1990, 496 p. ISBN: 978-0-471-72020-1

(23). Risk Phrases Used in the Countries of European Union. URL

(24). A. Chowdhury, S.T. Thynell, Propellants, Explos. Pyrotech. 35 (2010) 572‒581. Crossref DOI: https://doi.org/10.1002/prep.200900103

(25). M. Atamanov, R. Amrousse, J. Jandosov, K. Hori, et al., Eurasian Chem.-Technol. J. 19 (2017) 215‒222. Crossref DOI: https://doi.org/10.18321/ectj665

(26). R.S. Jankovsky, HAN-Based Monopropellant Assessment for Spacecraft, in: American Institute of Aeronautics and Astronautics, 1996. Crossref DOI: https://doi.org/10.2514/6.1996-2863

(27). D. Meinhardt, S. Christofferson, E. Wucherer, B. Reed, Performance and life testing of small HAN thrusters, in: 35th Jt. Propuls. Conf. Exhib., American Institute of Aeronautics and Astronautics, Los Angeles, 1999: p. AIAA-99-2881. Crossref DOI: https://doi.org/10.2514/6.1999-2881

(28). R. Amrousse, T. Katsumi, N. Azuma, K. Hori, Combust. Flame 176 (2017) 334‒348. Crossref DOI: https://doi.org/10.1016/j.combustflame.2016.11.011

(29). W.S. Chai, K.H. Cheah, M-H. Wu, K.S. Koh, et al., Acta Astronaut. 196 (2022) 194‒214. Crossref DOI: https://doi.org/10.1016/j.actaastro.2022.04.011

(30). J. Knapton, W. Morrison, G. Klingenberg, G. Wren, Liquid propellant gun technology, American Institute of Aeronautics and Astronautics, Washington, DC, 1998. Crossref DOI: https://doi.org/10.2514/4.471964

(31). M.M. Decker, N. Klein, E. Freedman, C.S. Leveritt, J.Q. Wojcicchowski. “HAN-Based Liquid Gun Propellants: Physical Properties.” BRL Report No. TR-2864, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, November 1987.

(32). D. Freudenmann, H.K. Ciezki, Propellants, Explos. Pyrotech. 44 (2019) 1084‒1089. Crossref DOI: https://doi.org/10.1002/prep.201900127

(33). R. Masse, M. Allen, R. Spores, E.A. Driscoll, AF-M315E Propulsion System Advances 1135 and Improvements, in: 52nd AIAA/SAE/ASEE Jt. Propuls. Conf., Salt Lake City, 2016. Crossref DOI: https://doi.org/10.2514/6.2016-4577

(34). R. Masse, J. Overly, M. Allen, R. Spores, A new state-of-the-art in AF-M315E thruster technologies, in: 48th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib., American Institute of Aeronautics and Astronautics, Atlanta, 2012. Crossref DOI: https://doi.org/10.2514/6.2012-4335

(35). Y.P. Chang, K. Josten, K. Kuo, B. Reed, Combustion characteristics of energetic HAN/ methanol-based monopropellants, in: 38th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Indianapolis, 2002. Crossref DOI: https://doi.org/10.2514/6.2002-4032

(36). D.L. Zhu, C.K. Law, Combust. Flame 70 (1987) 333‒342. Crossref DOI: https://doi.org/10.1016/0010-2180(87)90112-X

(37). K. Hori, T. Katsumi, S. Sawai, N. Azuma, et al., Propellants, Explos. Pyrotech. 44 (2019) 1080‒1083. Crossref DOI: https://doi.org/10.1002/prep.201900237

(38). F. Chen, C. Xuan, Q. Lu, L. Xiao, et al., Defence Technol. 19 (2023) 163‒195. Crossref

(39). R. Amrousse, S. Royer, S. Laassiri, International Journal of Energetic Materials and Chemical Propulsion 10 (2011) 245‒257. Crossref DOI: https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2012005172

(40). X. M. Wang, H. Z. Liu, H. X. Xu, et al. Chem. Propellants Polym. Mat. 12 (2014) 9‒13.

(41). N. Wingborg, M. Johansson, L. Bodin, Initial development of a laboratory rocket thruster for ADN-based liquid monopropellants [Report]. Swedish Defence Research Agency; 2006.

(42). X.J. Chen, E.Z. Jiang, X.F. Gao, et al. Research progress of ADN-based propellants. 3rd Seminar on Synthesis and Application of ADN (2020), pp. 43‒48.

(43). F. Chen, C. Xuan, Q. Lu, Lei Xiao, et al., Defence Technol. 19 (2023) 163‒195. Crossref DOI: https://doi.org/10.1016/j.dt.2022.04.006

(44). K. Anflo, B. Crowe, In-space demonstration of an ADN-based propulsion system. In: 47th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. San Diego, California, 2011. Crossref DOI: https://doi.org/10.2514/6.2011-5832

(45). K. Anflo, R. Mollerberg, Acta Astronaut. 65 (2009) 1238‒1249. Crossref DOI: https://doi.org/10.1016/j.actaastro.2009.03.056

(46). M. Wilhelm, M. Negri, H. Ciezki, S. Schlechtriem, Acta Astronaut. 158 (2019) 388‒396. Crossref DOI: https://doi.org/10.1016/j.actaastro.2018.05.057

(47). J.W. Kim, S. Baek, Y. Jung, W. Yoon, et al., Acta Astronaut. 178 (2021) 241‒249. Crossref DOI: https://doi.org/10.1016/j.actaastro.2020.09.007

(48). H. Kang, D. Lee. S. Kang. S. Kwon, Acta Astronaut. 130 (2017) 75‒83. Crossref DOI: https://doi.org/10.1016/j.actaastro.2016.10.023

(49). K. Czyzewska, A. Trusek-Holownia, M. Dabrowa, F. Sarmiento, et al., Catal. Today 331 (2019) 30‒34. Crossref DOI: https://doi.org/10.1016/j.cattod.2017.11.025

(50). O. Zeineb, B. Hedi, M.R. Jeday, C. Cheker, Int. J. Hydrog. Energy 40 (2015) 1278‒1282. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2014.09.144

(51). C. Xupeng, L. Yong, Z. Zhaoying, F. Ruili, Sens. Actuator A Phys. 108 (2003) 149‒154. Crossref DOI: https://doi.org/10.1016/S0924-4247(03)00376-5

(52). D. Jang, S. Kang, S. Kwon, Aerosp. Sci. Technol. 41 (2015) 24‒27. Crossref DOI: https://doi.org/10.1016/j.ast.2014.12.010

(53). Y. Moon, C. Park, S. Jo, S. Kwon, Aerosp. Sci. Technol. 33 (2014) 118‒121. Crossref DOI: https://doi.org/10.1016/j.ast.2014.01.006

(54). S. Jo, Aerosp. Sci. Technol. 60 (2017) 1‒8. Crossref DOI: https://doi.org/10.1016/j.ast.2016.10.022

(55). H. Zhang, X. Deng, C. Jiao, et al., Mater. Res. Bull. 79 (2016) 29‒35. Crossref DOI: https://doi.org/10.1016/j.materresbull.2016.02.042

(56). R. Amrousse, C. Augustin, K. Farhat, Y. Batonneau, et al., Int. J. Energ. Mat. Chem. Prop. 10 (2011) 337‒349. Crossref DOI: https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2012005202

(57). H. Li, L. Ye, X. Wei, et al., Aerosp. Sci. Technol. 70 (2017) 636‒643. Crossref DOI: https://doi.org/10.1016/j.ast.2017.09.003

(58). H.R. Mahmoud, S.A. El-Molla, M.A. Naghmash, Ultrasonics 95 (2019) 95‒103. Crossref DOI: https://doi.org/10.1016/j.ultras.2019.03.011

(59). X-J. Yang, P-F Tian, H-L. Wang, et al., J. Catal. 336 (2016) 126‒132. Crossref DOI: https://doi.org/10.1016/j.jcat.2015.12.029

(60). M. Timusk, A. Kuus, K. Utt, et al., Mater. Des. 111 (2016) 80‒87. Crossref DOI: https://doi.org/10.1016/j.matdes.2016.08.092

(61). J.C. Claussen, M.A. Daniele, J. Geder, et al., ACS Appl. Mater. Interfaces 6 (2014) 17837‒17847. Crossref DOI: https://doi.org/10.1021/am504525e

(62). A. Pasini, L. Torre, L. Romeo, et al., J. Propuls. Power 27 (2011) 428‒436. Crossref DOI: https://doi.org/10.2514/1.B34000

(63). Department of Defense Index of Specifications and Standards. MIL-PRF-16005F Performance Specification: Propellant, Hydrogen Peroxide; Department of Defense: Philadelphia, USA, 2003.

(64). A. Pasini, G. Pace, L. Torre, Propulsive Performance of 1N 98% Hydrogen Peroxide Thruster. In Proceedings of the 51st AIAA/SAE/ASEE Jt. Propuls. Conf. Orlando, FL, USA, 2015. Crossref DOI: https://doi.org/10.2514/6.2015-4059

(65). A. Mayer, I. Waugh, M. Poucet, European Fuel Blend Development Final Report‒TNO 2018 R10640; TNO‒Netherlands Organization for Applied Scientific Research: Rijswijk, The Netherlands, 2018.

(66). L. Werling, T. Hörger, Acta Astronaut. 189 (2021) 437–451. Crossref DOI: https://doi.org/10.1016/j.actaastro.2021.07.011

(67). S. Liu, N. Tang, Q. Shang, Chinese J. Catal. 39 (2018) 1189–1193. Crossref DOI: https://doi.org/10.1016/S1872-2067(18)63077-3

(68). G.D.D. Martino, G. Gallo, S. Mungiguerra, et al., Acta Astronaut. 180 (2021) 460–469. Crossref DOI: https://doi.org/10.1016/j.actaastro.2020.12.016

(69). A. Mayer, I. Waugh, M. Poucet, European Fuel Blend Development Final Report-TNO 2018 R10640; TNO-Netherlands Organization for Applied Scientific Research: Rijswijk, The Netherlands, 2018.

(70). A. Mayer, W. Werling, A. Watts, M. Poucet, et aL., European Fuel Blend Development for In-space propulsion. In Proceedings of the Space propulsion Conference, Seville, Spain, 2018.

(71). U. Gotzig, Challenges and Economic Benefits of Green Propellants for Satellite Propulsion7th European Conference for Aeronautics and Space Sciences (EUCASS), 2015.

(72). K.P. Doyle, M.A. Peck, J. Spacecr. Rockets 57 (2020). Crossref DOI: https://doi.org/10.2514/1.A34632

(73). R.A. Zeledon, M.A. Peck, Electrolysis Propulsion for CubeSat-Scale Spacecraft, AIAA SPACE 2011 Jt. Propuls. Conf., 2011, Long Beach, California. DOI: https://doi.org/10.2514/6.2011-7134

(74). K.P. Doyle, M.A. Peck, IEEE Aerospace and Electronic Systems Magazine 34 (2020) 4‒19. Crossref DOI: https://doi.org/10.1109/MAES.2019.2923312

(75). K. James, T. Moser, A. Conley, J. Slostad, R. Hoyt, Performance Characterization of the HYDROS™ Water Electrolysis Thruster”, 32nd AAS Guidance and Control Conference AAS (2016) pp. 17‒1145.

(76). M. Hwang, T-S. Rho, H.J. Lee, Acta Astronaut. 200 (2022) 316‒328. Crossref DOI: https://doi.org/10.1016/j.actaastro.2022.08.022

(77). NASA CubeSat to Demonstrate Water-Fueled Moves in Space. URL

(78). A.B. Aziz, R. Mamat, W.K.W. Ali, M.R.M. Perang, Appl. Mech. Mater. 773‒774 (2015) 470‒475. Crossref DOI: https://doi.org/10.4028/www.scientific.net/AMM.773-774.470

(79). S.M. Martin and E.H. Hughes. Subatmospheric Burning Rates and Critical Diameters for Ap/Htpb Propellant. U.S. Army Ballistic Research Laboratory, 1989.

(80). D. Perez, K. Ramohalli, Scientific Approach to Propellant Processing: Slurry Viscosity and Rheology. AIAA/SAE/ASME 27th Jt. Propuls. Conf. Sacramento, CA (1991). Crossref DOI: https://doi.org/10.2514/6.1991-2087

(81). P. Kumar, Defence Technol. 14 (2018) 661‒673. Crossref DOI: https://doi.org/10.1016/j.dt.2018.03.009

(82). J.C. Bottaro, P.E. Penwell, R.J. Schmitt, J. Am. Chem. Soc. 119 (1997) 9405‒9410. Crossref DOI: https://doi.org/10.1021/ja9709278

(83). H. Ostmark, U. Bemm, A. Langlet, R. Sanden, et al., Energ. Mat. 18 (2000) 123‒138. Crossref DOI: https://doi.org/10.1080/07370650008216116

(84). A.B. Andreev, O.V. Anikin, A.P. Ivanov, V.K. Krylov, et al., Russ. Chem. Bull. 49 (2000) 1974‒1976. Crossref DOI: https://doi.org/10.1023/A:1009555405171

(85). I.B. Mishra, T.B. Russell, Thermochim. Acta 384 (2002) 47‒56. Crossref DOI: https://doi.org/10.1016/S0040-6031(01)00776-6

(86). H. Matsunga, H. Habu, A. Miyake, J. Therm. Anal. Calorim. 111 (2013) 1183‒1188. Crossref DOI: https://doi.org/10.1007/s10973-012-2441-0

(87). M.Y. Nagamachi, J.I.S. Oliveira, A.M. Kawamoto, R.C.L. Dutra, J. Aero. Technol. Manag. 1 (2009) 153‒160. DOI: https://doi.org/10.5028/jatm.2009.0102153160

(88). R. Gilardi, J.F. Anderson, C. George, R.J. Butcher, J. Am. Chem. Soc. 119 (1997) 9411‒9416. Crossref DOI: https://doi.org/10.1021/ja9709280

(89). E. Landsem, T.L. Jensen, F.K. Hansen, E. Unneberg, T.E. Kristensen, Propellants, Explos. Pyrotech. 37 (2012) 691‒698. Crossref

(90). Y. Guo, Q. Zhou, X. Chen, Y. Fu, et al., J. Mater. Sci. Technol. 119 (2022) 53‒60. Crossref DOI: https://doi.org/10.1016/j.jmst.2021.11.067

(91). S.R. Chakravarthy, J.M. Freeman, E.W. Price, R.K. Sigman, Propellants, Explos. Pyrotech. 29 (2004) 220‒230. Crossref DOI: https://doi.org/10.1002/prep.200400053

(92). O.P. Korobeinichev, A.P. Paletsky, Combust. Flame 127 (2001) 2059‒2065. Crossref DOI: https://doi.org/10.1016/S0010-2180(01)00308-X

(93). T. Parr, D.H. Parr, 30th JANNAF combustion subcommittee meeting, vol. II (1993).

(94). O.P. Korobeinichev, A.A. Paletskii, E.N. Volkov, Russ. J. Phys. Chem. B 2 (2008) 206‒228. Crossref DOI: https://doi.org/10.1134/S1990793108020085

(95). O.P. Korobeinichev, A.A. Paletskii, A.G. Tereschenko, E.N. Volkov, Proc. Combust. Inst. 29 (2002) 2955‒2961. Crossref DOI: https://doi.org/10.1016/S1540-7489(02)80361-3

(96). E. Landsem, T.L. Jensen, F.K. Hansen, et al., Propellants, Explos. Pyrotech. 37 (2012) 691‒698. Crossref DOI: https://doi.org/10.1002/prep.201200004

(97). A. Larsson, N. Wingborg, Green propellants based on ammonium dinitramide (ADN), Dr Jason Hall (Ed.), Advances in spacecraft technologies (2011), ISBN: 978-953-307-551-8. DOI: https://doi.org/10.5772/13640

(98). D.E.G. Jones, Q.S.M. Kwok, M. Vachom, et al., Propellants, Explos. Pyrotech. 30 (2005) 140‒147. Crossref DOI: https://doi.org/10.1002/prep.200400096

(99). L.V. Kuibida, O.P. Korobeinichev, A.G. Shmakov, Combust. Flame 126 (2001) 1655‒1661. Crossref DOI: https://doi.org/10.1016/S0010-2180(01)00274-7

(100). S. Cerri, M.A. Bohn, K. Menke, L. Galfeti, Propellants, Explos. Pyrotech. 38 (2013) 190‒198. Crossref DOI: https://doi.org/10.1002/prep.201200186

(101). N. Wingborg, S. Andreasson, J. Flon, M. Johnsson, et al., 46th AIAA/ASME/SAE/ ASEE Jt. Propuls. Conf. 2010, Nashville TN, United States. Crossref DOI: https://doi.org/10.2514/6.2010-6586

(102). M.B. Talawar, R. Sivabalan, M. Anniyappan, et al., Combust. Explos. Shock Waves 43 (2007) 62‒72. Crossref DOI: https://doi.org/10.1007/s10573-007-0010-9

(103). Hinshaw, et al. United state patent 1996; Patent No. 5498303.

(104). J.P. Agrawal, In: High-energy materials: propellants, explosives and pyrotechnics. Wiley Publications, 2010. Crossref DOI: https://doi.org/10.1002/9783527628803

(105). J. Graetz, J.J. Reilly, V.A. Yartys, et al., J. Alloy. Compd. 509 (2011) S517-S528. Crossref DOI: https://doi.org/10.1016/j.jallcom.2010.11.115

(106). M. Yu, Z. Zhu, H.-P. Li, Q. Yan, Chem. Eng. J. 421 (2021) 129753. Crossref DOI: https://doi.org/10.1016/j.cej.2021.129753

(107). V.P. Tarasov, Y.B. Muravlev, S.I. Bakum, A.V. Novikov, Doklady Physical Chemistry 393 (2003) 353‒356. Crossref DOI: https://doi.org/10.1023/B:DOPC.0000010342.35835.cc

(108). B. Xu, J. Liu, X. Wang, Vacuum 99 (2014) 127‒134. Crossref DOI: https://doi.org/10.1016/j.vacuum.2013.05.009

(109). S.C. Gao, H.Z. Liu, X.H. Wang, et al., Int. J. Hydrog. Energy 42 (2017) 25310‒25315Crossref DOI: https://doi.org/10.1016/j.ijhydene.2017.08.074

(110). H. Z. Liu, X.H. Wang, Z.H. Dong, et al., Int. J. Hydrog. Energy 38 (2013) 10851‒10856. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2013.02.095

(111). H.P. Li, D.L. Liang, M.H. Yu, et al., Int. J. Hydrog. Energy 45 (2020) 24958‒24967. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.06.124

Downloads

Published

20-03-2023

How to Cite

Remissa, I., Jabri, H., Hairch, Y., Toshtay, K., Atamanov, M., Azat, S., & Amrousse, R. (2023). Propulsion Systems, Propellants, Green Propulsion Subsystems and their Applications: A Review. Eurasian Chemico-Technological Journal, 25(1), 3–19. https://doi.org/10.18321/ectj1491

Issue

Section

Article

Most read articles by the same author(s)