Properties, Bioactivity and Viability of the New Generation of Oxyfluoronitride Bioglasses

Authors

  • A. Bachar Laboratoire Génie des Procédés (LGP), Faculté des Sciences, Université Ibnou Zohr, Agadir, Morocco; Faculté des Sciences Appliquées - Ait Melloul, Université Ibnou Zohr Agadir, Morocco
  • A. Mabrouk Laboratoire de Recherche en Sciences et Techniques (LRST), Ecole Supérieure de l’Education et de la Formation d’Agadir (ESEFA), Nouveau Complexe Universitaire, Université Ibnou Zohr, Agadir, Morocco
  • R. Amrousse University of Chouaib Doukkali, Faculty of Sciences, 24000 El Jadida, Morocco
  • S. Azat Satbayev University, 22a Satbayev str., Almaty, Kazakhstan
  • C. Follet Université Polytechnique Hauts-de-France, Laboratoire CERAMATHS/Département Matériaux et Procédés, Maubeuge, France
  • C. Mercier Université Polytechnique Hauts-de-France, Laboratoire CERAMATHS/Département Matériaux et Procédés, Maubeuge, France
  • F. Bouchart Université Polytechnique Hauts-de-France, Laboratoire CERAMATHS/Département Matériaux et Procédés, Maubeuge, France

DOI:

https://doi.org/10.18321/ectj1565

Keywords:

bioactive glass , oxyfluonitride glass, mechanical properties, bioactivity, cytotoxicity, biofilm formation

Abstract

In this study, the deposition of apatite on the surface of the glasses with a composition of 22.25Na2O–13.5CaO–2.5P2O5–6.75CaF2–(55−3x) SiO2–xSi3N4 (x is the no. of moles of Si3N4) (where x = 0-4), was studied to examine the influence of nitrogen content on their properties, bioactivity and viability. It was established that density, glass transition temperatures, Young’s modulus of elasticity, Vicker’s microhardness and fracture toughness increased significantly with increasing nitrogen concentration. Bioactivity was investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Hydroxyapatite (HCA) layer thickness was determined using a scanning electron microscope coupled with Energy Dispersive Spectroscopy (SEM-EDS). The bioactivity of the glasses was evaluated by dipping them in a simulated body fluid (SBF) and demonstrated that all glasses are bioactive. Cytotoxicity tests using different concentrations of bioglass powders in a cell growth environment further demonstrated that they were not cytotoxic. The biofilm formation by two bacteria’s E. coli and S. marcescens was characterized by the absorbance of crystal violet. The influence on the presence of bacteria in the form of biofilms appears to be affected by the combination of two main factors: glass reactivity and nitrogen content. Additionally, the type or characteristics of the bacteria also play a significant role in this context.

References

(1). M. Cannio, D. Bellucci, J.A. Roether, D.N. Boccaccini, V. Cannillo, Materials 14 (2021) 5440. Crossref DOI: https://doi.org/10.3390/ma14185440

(2). S. Hampshire, M.J. Pomeroy, Encyclopedia of glass science, technology, history, and culture. 1st ed. Wiley; (2021) 891–900. Crossref DOI: https://doi.org/10.1002/9781118801017.ch7.8

(3). N.A. Wójcik, B. Jonson, D. Möncke, E.I. Kamitsos, et al., J. Non Cryst. Solids 522 (2019) 119585. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2019.119585

(4). AR. Garcia, C. Clausell, A. Barba, Bol. Soc. Esp. Ceram Vidr. 55 (2016) 209–218. Crossref DOI: https://doi.org/10.1016/j.bsecv.2016.09.004

(5). C. Clausell, A. Barba, J.C. Jarque, A.R. García- Bellés, et al., J. Am. Ceram. Soc. 101 (2018) 189– 200. Crossref DOI: https://doi.org/10.1111/jace.15210

(6). N.A. Wójcik, B. Jonson, D. Möncke, D. Palles, et al. J. Non Cryst. Solids 494 (2018) 66–77. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2018.04.055

(7). G.L. Paraschiv, F. Muñoz, G. Tricot, N. Mascaraque, et al., J. Non Cryst. Solids 462 (2017) 51–64. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2017.02.011

(8). A. Sharafat, B. Forslund, J. Grins, S. Esmaeilzadeh, J. Mater Sci. 44 (2009) 664–670. Crossref DOI: https://doi.org/10.1007/s10853-008-3058-3

(9). G.L. Paraschiv, F. Muñoz, L.R. Jensen, Y. Yue, et al., J. Non Cryst. Solids 441 (2016) 228. DOI: https://doi.org/10.1016/j.jnoncrysol.2016.03.009

(10). M.R. Cicconi, A. Veber, D. de Ligny, J. Rocherullé, et al., J. Lumin. 183 (2017) 53–61. Crossref DOI: https://doi.org/10.1016/j.jlumin.2016.11.019

(11). C. Park, S. Lee, S. Choi, D. Shin, Thin Solid Films 685 (2019) 434–439. Crossref DOI: https://doi.org/10.1016/j.tsf.2019.06.055

(12). J.R. Jones, Acta Biomater. 9 (2013) 4457–4486. Crossref DOI: https://doi.org/10.1016/j.actbio.2012.08.023

(13). Y. Su, J. Falgenhauer, A. Polity, T. Leichtweiß, et al., Solid State Ionics 282 (2015) 63–69. Crossref DOI: https://doi.org/10.1016/j.ssi.2015.09.022

(14). N. Krishnamacharyulu, G. Jagan Mohini, G. Sahaya Baskaran, V. Ravi Kumar, et al., J. Alloys Compd. 734 (2018) 318–328. Crossref DOI: https://doi.org/10.1016/j.jallcom.2017.10.271

(15). S. Ali, A.S. Hakeem, T. Höche, Q.A. Drmosh, et al. (2020) 1–21. Investigation of instinctive defects in nitrogen enrich lanthanum silicon oxynitride glasses. (Research Square is a preprint platform). Crossref DOI: https://doi.org/10.21203/rs.3.rs-22643/v1

(16). S. Hampshire, M.J. Pomeroy, Appl. Ceram. Tech. 5 (2008) 155–163. Crossref DOI: https://doi.org/10.1111/j.1744-7402.2008.02205.x

(17). A. Sharafat, B. Jonson, J. Am. Ceram. Soc. 94 (2011) 2912–2917. Crossref DOI: https://doi.org/10.1111/j.1551-2916.2011.04718.x

(18). A.R. Hanifi, A. Genson, M.J. Pomeroy, S. Hampshire, J. Am. Ceram. Soc. 95 (2012) 600– 606. Crossref DOI: https://doi.org/10.1111/j.1551-2916.2011.05001.x

(19). M.J. Pomeroy, E. Nestor, R. Ramesh, S. Hampshire, Am. Ceram Soc. 88 (2015) 875–881. Crossref DOI: https://doi.org/10.1111/j.1551-2916.2004.00141.x

(20). A. Bachar, C. Mercier, A. Tricoteaux, A. Leriche, et al., J. Non Cryst. Solids 358 (2012) 693–701. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2011.11.036

(21). G.L. Paraschiv, S. Gomez, J.C. Mauro, L. Wondraczek, et al., Phys. Chem. B 119 ( 2015) 4109–4115. Crossref

(22). N. Mascaraque, G. Tricot, B. Revel, A. Durán, et. al., Solid State Ionics 254 (2014) 40–47. Crossref DOI: https://doi.org/10.1016/j.ssi.2013.10.061

(23). A. Bachar, C. Mercier, C. Follet, N. Bost, et al., J. Mater. Environ. Sci. 7 (2016) 347–355. URL

(24). G.L. Paraschiv, S. Gomez, J.C. Mauro, L. Wondraczek, et al., J. Phys. Chem. B 119 (2015) 4109–4115. Crossref DOI: https://doi.org/10.1021/jp512235t

(25). A. Mabrouk, A. Bachar, A. Atbir, C. Follet, et al., J. Mech. Behav. Biomed. Mater. 86 (2018) 284–293. Crossref DOI: https://doi.org/10.1016/j.jmbbm.2018.06.023

(26). C. Duée, F. Désanglois, I. Lebecq, C. Follet- Houttemane, J. Non Cryst. Solids 358 (2012) 1083– 1090. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2012.02.007

(27). H. Segawa, N. Hirosaki, S. Ohki, K. Deguchi, et. al. Opt. Mater. 42 (2015) 399–405. Crossref DOI: https://doi.org/10.1016/j.optmat.2015.01.036

(28). S. Ahmadi, B. Eftekhari Yekta, H. Sarpoolaky, A. Aghaei, J. Non Cryst. Solids 404 (2014) 61–66. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2014.07.037

(29). F. Muñoz, R.J. Jiménez-Riobóo, R. Balda, J. Alloys Compd. 816 (2020) 152657. Crossref DOI: https://doi.org/10.1016/j.jallcom.2019.152657

(30). G.L. Paraschi, F. Muñoz, L.R. Jensen, R.M. Larsen, et. al., J. Am. Ceram. Soc. 101 (2018) 5004–5019. Crossref DOI: https://doi.org/10.1111/jace.15747

(31). A. García-Bellés, C. Clausell, A. Barba, M.J. Pomeroy, et. al., Ceram Int. 43 (2017) 4197–4204. Crossref DOI: https://doi.org/10.1016/j.ceramint.2016.12.046

(32). T. Kokubo, H. Takadama, Biomaterials 27 (2006) 2907–2915. Crossref DOI: https://doi.org/10.1016/j.biomaterials.2006.01.017

(33). S.P. Singh, J.F. Schneider, S. Kundu, ACM. Rodrigues, et al., Mater. Chem. Phys. 211 (2018) 438–444. Crossref DOI: https://doi.org/10.1016/j.matchemphys.2018.02.045

(34). J.C. Hornez, A. Lefèvre, D. Joly, F. Hildebrand, Biomol. Eng. 19 (2002) 103–107. Crossref DOI: https://doi.org/10.1016/S1389-0344(02)00017-5

(35). H.R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, Materials 11 (2018) 2530. Crossref DOI: https://doi.org/10.3390/ma11122530

(36). T. Rouxel, Philos. Transact. A Math. Phys. Eng. Sci. 373 (2015). Crossref DOI: https://doi.org/10.1098/rsta.2014.0140

(37). I. Rehman, L.L. Hench, W. Bonfield, R. Smith, Biomaterials 15 (1994) 865–870. Crossref DOI: https://doi.org/10.1016/0142-9612(94)90044-2

(38). S. Ali, B. Jonson, M.J. Pomeroy, S. Hampshire, Ceram. Int. 41 (2015) 3345–3354. Crossref DOI: https://doi.org/10.1016/j.ceramint.2014.11.030

(39). S. Hampshire, J. Eur. Ceram. Soc. 28(2008) 1475– 1483. Crossref DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.12.021

(40). M. Vallet-Regi, I. Izquierdo-Barba, A.J. Salinas, Biomed. Mater. Res. 46 (1999) 560–565. Crossref DOI: https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<560::AID-JBM14>3.3.CO;2-D

(41). F. Muñoz, A. Saitoh, R.J. Jiménez-Riobóo, R. Balda, J. Non. Cryst. Solids 473 (2017) 125–131. Crossref DOI: https://doi.org/10.1016/j.jnoncrysol.2017.08.005

Downloads

Published

20-04-2024

How to Cite

Bachar, A., Mabrouk, A., Amrousse, R., Azat, S., Follet, C., Mercier, C., & Bouchart, F. (2024). Properties, Bioactivity and Viability of the New Generation of Oxyfluoronitride Bioglasses . Eurasian Chemico-Technological Journal, 26(1), 43–52. https://doi.org/10.18321/ectj1565

Issue

Section

Article

Most read articles by the same author(s)