Properties, Bioactivity and Viability of the New Generation of Oxyfluoronitride Bioglasses
DOI:
https://doi.org/10.18321/ectj1565Keywords:
bioactive glass , oxyfluonitride glass, mechanical properties, bioactivity, cytotoxicity, biofilm formationAbstract
In this study, the deposition of apatite on the surface of the glasses with a composition of 22.25Na2O–13.5CaO–2.5P2O5–6.75CaF2–(55−3x) SiO2–xSi3N4 (x is the no. of moles of Si3N4) (where x = 0-4), was studied to examine the influence of nitrogen content on their properties, bioactivity and viability. It was established that density, glass transition temperatures, Young’s modulus of elasticity, Vicker’s microhardness and fracture toughness increased significantly with increasing nitrogen concentration. Bioactivity was investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Hydroxyapatite (HCA) layer thickness was determined using a scanning electron microscope coupled with Energy Dispersive Spectroscopy (SEM-EDS). The bioactivity of the glasses was evaluated by dipping them in a simulated body fluid (SBF) and demonstrated that all glasses are bioactive. Cytotoxicity tests using different concentrations of bioglass powders in a cell growth environment further demonstrated that they were not cytotoxic. The biofilm formation by two bacteria’s E. coli and S. marcescens was characterized by the absorbance of crystal violet. The influence on the presence of bacteria in the form of biofilms appears to be affected by the combination of two main factors: glass reactivity and nitrogen content. Additionally, the type or characteristics of the bacteria also play a significant role in this context.
References
(1). M. Cannio, D. Bellucci, J.A. Roether, D.N. Boccaccini, V. Cannillo, Materials 14 (2021) 5440. Crossref
(2). S. Hampshire, M.J. Pomeroy, Encyclopedia of glass science, technology, history, and culture. 1st ed. Wiley; (2021) 891–900. Crossref
(3). N.A. Wójcik, B. Jonson, D. Möncke, E.I. Kamitsos, et al., J. Non Cryst. Solids 522 (2019) 119585. Crossref
(4). AR. Garcia, C. Clausell, A. Barba, Bol. Soc. Esp. Ceram Vidr. 55 (2016) 209–218. Crossref
(5). C. Clausell, A. Barba, J.C. Jarque, A.R. García- Bellés, et al., J. Am. Ceram. Soc. 101 (2018) 189– 200. Crossref
(6). N.A. Wójcik, B. Jonson, D. Möncke, D. Palles, et al. J. Non Cryst. Solids 494 (2018) 66–77. Crossref
(7). G.L. Paraschiv, F. Muñoz, G. Tricot, N. Mascaraque, et al., J. Non Cryst. Solids 462 (2017) 51–64. Crossref
(8). A. Sharafat, B. Forslund, J. Grins, S. Esmaeilzadeh, J. Mater Sci. 44 (2009) 664–670. Crossref
(9). G.L. Paraschiv, F. Muñoz, L.R. Jensen, Y. Yue, et al., J. Non Cryst. Solids 441 (2016) 228.
(10). M.R. Cicconi, A. Veber, D. de Ligny, J. Rocherullé, et al., J. Lumin. 183 (2017) 53–61. Crossref
(11). C. Park, S. Lee, S. Choi, D. Shin, Thin Solid Films 685 (2019) 434–439. Crossref
(12). J.R. Jones, Acta Biomater. 9 (2013) 4457–4486. Crossref
(13). Y. Su, J. Falgenhauer, A. Polity, T. Leichtweiß, et al., Solid State Ionics 282 (2015) 63–69. Crossref
(14). N. Krishnamacharyulu, G. Jagan Mohini, G. Sahaya Baskaran, V. Ravi Kumar, et al., J. Alloys Compd. 734 (2018) 318–328. Crossref
(15). S. Ali, A.S. Hakeem, T. Höche, Q.A. Drmosh, et al. (2020) 1–21. Investigation of instinctive defects in nitrogen enrich lanthanum silicon oxynitride glasses. (Research Square is a preprint platform). Crossref
(16). S. Hampshire, M.J. Pomeroy, Appl. Ceram. Tech. 5 (2008) 155–163. Crossref
(17). A. Sharafat, B. Jonson, J. Am. Ceram. Soc. 94 (2011) 2912–2917. Crossref
(18). A.R. Hanifi, A. Genson, M.J. Pomeroy, S. Hampshire, J. Am. Ceram. Soc. 95 (2012) 600– 606. Crossref
(19). M.J. Pomeroy, E. Nestor, R. Ramesh, S. Hampshire, Am. Ceram Soc. 88 (2015) 875–881. Crossref
(20). A. Bachar, C. Mercier, A. Tricoteaux, A. Leriche, et al., J. Non Cryst. Solids 358 (2012) 693–701. Crossref
(21). G.L. Paraschiv, S. Gomez, J.C. Mauro, L. Wondraczek, et al., Phys. Chem. B 119 ( 2015) 4109–4115. Crossref
(22). N. Mascaraque, G. Tricot, B. Revel, A. Durán, et. al., Solid State Ionics 254 (2014) 40–47. Crossref
(23). A. Bachar, C. Mercier, C. Follet, N. Bost, et al., J. Mater. Environ. Sci. 7 (2016) 347–355. URL
(24). G.L. Paraschiv, S. Gomez, J.C. Mauro, L. Wondraczek, et al., J. Phys. Chem. B 119 (2015) 4109–4115. Crossref
(25). A. Mabrouk, A. Bachar, A. Atbir, C. Follet, et al., J. Mech. Behav. Biomed. Mater. 86 (2018) 284–293. Crossref
(26). C. Duée, F. Désanglois, I. Lebecq, C. Follet- Houttemane, J. Non Cryst. Solids 358 (2012) 1083– 1090. Crossref
(27). H. Segawa, N. Hirosaki, S. Ohki, K. Deguchi, et. al. Opt. Mater. 42 (2015) 399–405. Crossref
(28). S. Ahmadi, B. Eftekhari Yekta, H. Sarpoolaky, A. Aghaei, J. Non Cryst. Solids 404 (2014) 61–66. Crossref
(29). F. Muñoz, R.J. Jiménez-Riobóo, R. Balda, J. Alloys Compd. 816 (2020) 152657. Crossref
(30). G.L. Paraschi, F. Muñoz, L.R. Jensen, R.M. Larsen, et. al., J. Am. Ceram. Soc. 101 (2018) 5004–5019. Crossref
(31). A. García-Bellés, C. Clausell, A. Barba, M.J. Pomeroy, et. al., Ceram Int. 43 (2017) 4197–4204. Crossref
(32). T. Kokubo, H. Takadama, Biomaterials 27 (2006) 2907–2915. Crossref
(33). S.P. Singh, J.F. Schneider, S. Kundu, ACM. Rodrigues, et al., Mater. Chem. Phys. 211 (2018) 438–444. Crossref
(34). J.C. Hornez, A. Lefèvre, D. Joly, F. Hildebrand, Biomol. Eng. 19 (2002) 103–107. Crossref
(35). H.R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, Materials 11 (2018) 2530. Crossref
(36). T. Rouxel, Philos. Transact. A Math. Phys. Eng. Sci. 373 (2015). Crossref
(37). I. Rehman, L.L. Hench, W. Bonfield, R. Smith, Biomaterials 15 (1994) 865–870. Crossref
(38). S. Ali, B. Jonson, M.J. Pomeroy, S. Hampshire, Ceram. Int. 41 (2015) 3345–3354. Crossref
(39). S. Hampshire, J. Eur. Ceram. Soc. 28(2008) 1475– 1483. Crossref
(40). M. Vallet-Regi, I. Izquierdo-Barba, A.J. Salinas, Biomed. Mater. Res. 46 (1999) 560–565. Crossref
(41). F. Muñoz, A. Saitoh, R.J. Jiménez-Riobóo, R. Balda, J. Non. Cryst. Solids 473 (2017) 125–131. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.