Perspectives of the Silicon Dioxide Production from Rice Husk in Kazakhstan: an Overview

  • O. Kapizov Al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty, Kazakhstan
  • S. Azat Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str. Almaty, Kazakhstan; Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • K. Askaruly Institute of Combustion Problems, 172 Bogenbay batyr str. Almaty, Kazakhstan; Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • U. Zhantikeyev Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str. Almaty, Kazakhstan
  • Z. Tauanov Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • N.S. Bergeneva Al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty, Kazakhstan
  • A.R. Satayeva Nazarbayev university, 53 Kabanbai Batyr Ave., Nur-Sultan, Kazakhstan
Keywords: Rice husk, Rice hull (RH), Rice husk ash (RHA), Amorphous silica, Silica oxide

Abstract

Rice husks (RHs) are the hard-protecting coverings of grains of rice. Considering the fact that this agricultural waste accumulates over the years, the need for prompt resolve for RH waste is readily apparent. As claimed by the Food and Agriculture Organization of the United Nations (FAO), the production of the global paddy rice in 2016 is considered to be 748.0 million tons. Based on this, the amount of RHs makes up about ~20% of paddy rice production by weight. Much of this production is treated as waste and either thrown into rivers or tossed on landfills, often causing pollution problems when it decays or simply returned to the fields where it can become airborne. This work presents synthesis routes for the production of SiO2 from RH sourced in Kazakhstan. RH, chosen from Almaty, Kyzylorda and Turkystan regions, was utilized as the major silica source. The results shown verified that the highest purity (98.2–99.7%) amorphous silica with a certain surface area between 120–980 m2 g-1 could be extracted during acid treatment and controlled calcination. The structure is amorphous, porosity diameter reduced from 26.4 nm to 0.9 nm, certain pore volume raised from 0.5 to 1.2 cm3 g-1.

References

(1). Crop Prospects and Food Situation ‒ Quarterly Global Report, No. 1, March 2020. Crossref

(2). K. Askaruly, S. Azat, Z. Sartova, M. Yeleuov, A. Kerimkulova, K. Bekseitova, Journal of Chemical Technology and Metallurgy 55 (2020) 88–97. URL

(3). B. Meyer, L. Lundy, J. Watt, I. Abdullaev, J.E. Capilla Roma, Journal of Environmental Geography 9 (2016) 33–42. Crossref

(4). Y. Shen, P. Zhao, Q. Shao, Micropor. Mesopor. Mat. 188 (2014) 46‒76. Crossref

(5). S. Nagrale, H. Hajare, P. Modak, International Journal of Engineering Research and Applications (IJERA) 2 (2012) 1‒5.

(6). N. Sapawe, N.S. Osman, M.Z. Zakaria, S.A. S.S.M. Fikry, M.A.M. Aris, Materials Today: Proceedings 5 (2018) 21861‒21866. Crossref

(7). A.R. Kerimkulova, S. Azat, L. Velasco, Z.A. Mansurov, P. Lodewyckx, M.I. Tulepov, M.R. Kerimkulova, I. Berezovskaya, А. Imangazy, Journal of Chemical Technology and Metallurgy, 54 (2019) 578–584. URL

(8). S. Azat, V.V. Pavlenko, A.R. Kerimkulova, Z.A. Mansurov, Advanced Materials Research 535–537 (2012) 1041–1045. Crossref

(9). Statistic yearbooks. Agricultural, forest and fish in the Republic of Kazakhstan for each year 20002016 [Electronic source], 2016, URL

(10). S. Azat, Z. Sartova, K. Bekseitova, K. Askaruly, Turk. J. Chem. 43 (2019) 1258–1269. Crossref

(11). R.A. Bakar, R. Yahya, S.N. Gan, Procedia Chemistry 19 (2016) 189–195. Crossref

(12). I.J. Fernandes, F.A.L. Sánchez, José R. Jurado, A.G. Kieling, T.L.A.C. Rocha, C.A.M. Moraes, V.C. Sousa, Adv. Powder Technol. 28 (2017) 1228–1236. Crossref

(13). M.F.M. Zain, M.N. Islam, F. Mahmud, M. Jamil, Constr. Build. Mater. 25 (2011) 798–805. Crossref

(14). S. Kumar, P. Sangwan, R. Mor V. Dhankhar, S. Bidra, Research Journal of Chemical and Environmental Sciences 5 (2013) 126–129. URL

(15). J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Bioresource Technol. 170 (2014) 132– 137. Crossref

(16). Z.A. Mansurov, J.M. Jandosov, A.R. Kerimkulova, S. Azat, A.A. Zhubanova, I.E. Digel, A.S. Kistaubaeva, Eurasian Chem.- Technol. J. 15 (2013) 209–217. Crossref

(17). A.R. Kerimkulova, S. Azat, Z.A. Mansurov, M.K. Gilmanov, S.A. Ibragimova, S.M. Adekenov, B.B. Rachimova, Advanced Materials Research 535–537 (2012) 284–288. Crossref

(18). Y.-B. Im, R. Wahab, S. Ameen, Y.-S. Kim, O-B. Yang, H.-S. Shin, J. Nanosci. Nanotechno. 11 (2011) 5934–5938. Crossref

(19). K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, M. Maaza, Adv. Mater. Lett. 7 (2016) 684–696. Crossref

(20). Q. Tang, T. Wang, J. Supercrit. Fluid. 35 (2005) 91–94. Crossref

(21). M. Ahmaruzzaman, V.K. Gupta, Ind. Eng. Chem. Res. 50 (2011) 13589–13613. Crossref

(22). R.M. Mohamed, R.M. Radwan, M.M. Abdel- Aziz, M.M. Khattab, J. Appl. Polym. Sci. 115 (2010) 1495–1502. Crossref

(23). S. Azat, A.V. Korobeinyk, K. Moustakas, V.J. Inglezakis, J. Clean. Prod. 217 (2019) 352–359. Crossref

(24). H. Hamdan, M.N.M. Muhid, S. Endud, E. Listiorini, Z. Ramli, J. Non-Cryst. Solids 211 (1997) 126–131. Crossref

(25). B. Shi, Y.K. Shin, A.A. Hassanali, S.J. Singer, Colloid. Surface. B 157 (2017) 83–92. Crossref

(26). I.J. Fernandes, D. Calheiro, F.A.L. Sánchez, A.L.D. Camacho, T.L.A. de C. Rocha, C.A.M. Moraes, V.C. de. Sousa, Mat. Res. 20 (2017) 512–518. Crossref

(27). J.A.S. Costa, C.M. Paranhos, J. Clean. Prod. 192 (2018) 688–697. Crossref

(28). K.K. Larbi, Synthesis of high-purity silicon from rice husks. MS.C. thesis, University of Toronto, 2010.

(29). F. Ledesma E., R. Acosta C., L. Garrido M., D. Polanco I., C. Guarnaluce D., J. Mater. Environ. Sci. 6 (2015) 114–118.

(30). R.A. Bakar, R. Yahya, S.N. Gan, Procedia Chemistry 19 (2016) 189–195. Crossref

(31). I.B. Ugheoke, O. Mamat, Maejo Int. J. Sci. Technol. 6 (2012) 430–448.

(32). K.A. Matori, M.M. Haslinawati, Z.A. Wahab, H.A.A. Sidek, T.K. Ban, W.A.W.A.K. Ghani, MASAUM Journal of Basic and Applied Sciences 1 (2009) 512–515.

(33). G.R. de Sensale, Cement Concrete Comp. 32 (2010) 718‒725. Crossref

(34). J. Prasara, S.H. Gheewala, J. Clean. Prod. 167 (2018) 1020‒1028. Crossref

(35). R. Jauberthie, F. Rendell, S. Tamba, I. Cisse, Constr. Build. Mater. 14 (2000) 419‒423. Crossref

(36). Z.A. Mansurov, M.K. Atamanov, Z. Elemesova, B.T. Lesbaev, M.N. Chikradze, Combust. Explo. Shock 55 (2019) 402‒408. Crossref

(37). V. Kannan, Constr. Build. Mater. 160 (2018) 169‒179. Crossref

(38). M.K. Atamanov, R. Amrousse, K. Hori, Z. Mansurov, Combust. Sci. Technol. 191 (2019) 645‒658. Crossref

(39). J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Ind. Eng. Chem. Res. 54 (2015) 7241‒7250. Crossref

(40). S. Wardiyati, W.A. Adi, Deswita, IOP Conf. Ser.: Mater. Sci. Eng. 202 (2017). Crossref

(41). A. Mourhly, M. Khachani, A.El Hamidi, M. Kacimi, M. Halim, S. Arsalane, Nanomat. Nanotechno. 5 (2015). Crossref

(42). H.I. Meléndez-Ortiz, Y. Perera-Mercado, J.A. Mercado-Silva, Y. Olivares-Maldonado, G. Castruita, L.A. García-Cerda, Ceram. Int. 40 (2014) 9701‒9707. Crossref

(43). J. Umeda, K. Kondoh, Ind. Crop. Prod. 32 (2010) 539‒544. Crossref

Published
2020-12-28
How to Cite
[1]
O. Kapizov, “Perspectives of the Silicon Dioxide Production from Rice Husk in Kazakhstan: an Overview”, Eurasian Chem.-Technol. J., vol. 22, no. 4, p. 285‒293, Dec. 2020.
Section
Articles