Perspectives of the Silicon Dioxide Production from Rice Husk in Kazakhstan: an Overview

Authors

  • O. Kapizov Al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty, Kazakhstan
  • S. Azat Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str. Almaty, Kazakhstan; Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • K. Askaruly Institute of Combustion Problems, 172 Bogenbay batyr str. Almaty, Kazakhstan; Satbayev University, 22a Satpaev str., Almaty, Kazakhstan
  • U. Zhantikeyev Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str. Almaty, Kazakhstan
  • Z. Tauanov Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbay batyr str., Almaty, Kazakhstan
  • N.S. Bergeneva Al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty, Kazakhstan
  • A.R. Satayeva Nazarbayev university, 53 Kabanbai Batyr Ave., Nur-Sultan, Kazakhstan

DOI:

https://doi.org/10.18321/ectj993

Keywords:

Rice husk, Rice hull (RH), Rice husk ash (RHA), Amorphous silica, Silica oxide

Abstract

Rice husks (RHs) are the hard-protecting coverings of grains of rice. Considering the fact that this agricultural waste accumulates over the years, the need for prompt resolve for RH waste is readily apparent. As claimed by the Food and Agriculture Organization of the United Nations (FAO), the production of the global paddy rice in 2016 is considered to be 748.0 million tons. Based on this, the amount of RHs makes up about ~20% of paddy rice production by weight. Much of this production is treated as waste and either thrown into rivers or tossed on landfills, often causing pollution problems when it decays or simply returned to the fields where it can become airborne. This work presents synthesis routes for the production of SiO2 from RH sourced in Kazakhstan. RH, chosen from Almaty, Kyzylorda and Turkystan regions, was utilized as the major silica source. The results shown verified that the highest purity (98.2–99.7%) amorphous silica with a certain surface area between 120–980 m2 g-1 could be extracted during acid treatment and controlled calcination. The structure is amorphous, porosity diameter reduced from 26.4 nm to 0.9 nm, certain pore volume raised from 0.5 to 1.2 cm3 g-1.

References

(1). Crop Prospects and Food Situation ‒ Quarterly Global Report, No. 1, March 2020. Crossref DOI: https://doi.org/10.4060/ca8032en

(2). K. Askaruly, S. Azat, Z. Sartova, M. Yeleuov, A. Kerimkulova, K. Bekseitova, Journal of Chemical Technology and Metallurgy 55 (2020) 88–97. URL

(3). B. Meyer, L. Lundy, J. Watt, I. Abdullaev, J.E. Capilla Roma, Journal of Environmental Geography 9 (2016) 33–42. Crossref DOI: https://doi.org/10.1515/jengeo-2016-0010

(4). Y. Shen, P. Zhao, Q. Shao, Micropor. Mesopor. Mat. 188 (2014) 46‒76. Crossref DOI: https://doi.org/10.1016/j.micromeso.2014.01.005

(5). S. Nagrale, H. Hajare, P. Modak, International Journal of Engineering Research and Applications (IJERA) 2 (2012) 1‒5.

(6). N. Sapawe, N.S. Osman, M.Z. Zakaria, S.A. S.S.M. Fikry, M.A.M. Aris, Materials Today: Proceedings 5 (2018) 21861‒21866. Crossref DOI: https://doi.org/10.1016/j.matpr.2018.07.043

(7). A.R. Kerimkulova, S. Azat, L. Velasco, Z.A. Mansurov, P. Lodewyckx, M.I. Tulepov, M.R. Kerimkulova, I. Berezovskaya, А. Imangazy, Journal of Chemical Technology and Metallurgy, 54 (2019) 578–584. URL

(8). S. Azat, V.V. Pavlenko, A.R. Kerimkulova, Z.A. Mansurov, Advanced Materials Research 535–537 (2012) 1041–1045. Crossref DOI: https://doi.org/10.4028/www.scientific.net/AMR.535-537.1041

(9). Statistic yearbooks. Agricultural, forest and fish in the Republic of Kazakhstan for each year 20002016 [Electronic source], 2016, URL

(10). S. Azat, Z. Sartova, K. Bekseitova, K. Askaruly, Turk. J. Chem. 43 (2019) 1258–1269. Crossref DOI: https://doi.org/10.3906/kim-1903-53

(11). R.A. Bakar, R. Yahya, S.N. Gan, Procedia Chemistry 19 (2016) 189–195. Crossref

(12). I.J. Fernandes, F.A.L. Sánchez, José R. Jurado, A.G. Kieling, T.L.A.C. Rocha, C.A.M. Moraes, V.C. Sousa, Adv. Powder Technol. 28 (2017) 1228–1236. Crossref DOI: https://doi.org/10.1016/j.apt.2017.02.009

(13). M.F.M. Zain, M.N. Islam, F. Mahmud, M. Jamil, Constr. Build. Mater. 25 (2011) 798–805. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2010.07.003

(14). S. Kumar, P. Sangwan, R. Mor V. Dhankhar, S. Bidra, Research Journal of Chemical and Environmental Sciences 5 (2013) 126–129. URL

(15). J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Bioresource Technol. 170 (2014) 132– 137. Crossref DOI: https://doi.org/10.1016/j.biortech.2014.07.073

(16). Z.A. Mansurov, J.M. Jandosov, A.R. Kerimkulova, S. Azat, A.A. Zhubanova, I.E. Digel, A.S. Kistaubaeva, Eurasian Chem.- Technol. J. 15 (2013) 209–217. Crossref DOI: https://doi.org/10.18321/ectj224

(17). A.R. Kerimkulova, S. Azat, Z.A. Mansurov, M.K. Gilmanov, S.A. Ibragimova, S.M. Adekenov, B.B. Rachimova, Advanced Materials Research 535–537 (2012) 284–288. Crossref DOI: https://doi.org/10.4028/www.scientific.net/AMR.535-537.284

(18). Y.-B. Im, R. Wahab, S. Ameen, Y.-S. Kim, O-B. Yang, H.-S. Shin, J. Nanosci. Nanotechno. 11 (2011) 5934–5938. Crossref DOI: https://doi.org/10.1166/jnn.2011.4386

(19). K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, M. Maaza, Adv. Mater. Lett. 7 (2016) 684–696. Crossref DOI: https://doi.org/10.5185/amlett.2016.6192

(20). Q. Tang, T. Wang, J. Supercrit. Fluid. 35 (2005) 91–94. Crossref DOI: https://doi.org/10.1016/j.supflu.2004.12.003

(21). M. Ahmaruzzaman, V.K. Gupta, Ind. Eng. Chem. Res. 50 (2011) 13589–13613. Crossref DOI: https://doi.org/10.1021/ie201477c

(22). R.M. Mohamed, R.M. Radwan, M.M. Abdel- Aziz, M.M. Khattab, J. Appl. Polym. Sci. 115 (2010) 1495–1502. Crossref DOI: https://doi.org/10.1002/app.31158

(23). S. Azat, A.V. Korobeinyk, K. Moustakas, V.J. Inglezakis, J. Clean. Prod. 217 (2019) 352–359. Crossref DOI: https://doi.org/10.1016/j.jclepro.2019.01.142

(24). H. Hamdan, M.N.M. Muhid, S. Endud, E. Listiorini, Z. Ramli, J. Non-Cryst. Solids 211 (1997) 126–131. Crossref DOI: https://doi.org/10.1016/S0022-3093(96)00611-4

(25). B. Shi, Y.K. Shin, A.A. Hassanali, S.J. Singer, Colloid. Surface. B 157 (2017) 83–92. Crossref DOI: https://doi.org/10.1016/j.colsurfb.2017.05.048

(26). I.J. Fernandes, D. Calheiro, F.A.L. Sánchez, A.L.D. Camacho, T.L.A. de C. Rocha, C.A.M. Moraes, V.C. de. Sousa, Mat. Res. 20 (2017) 512–518. Crossref DOI: https://doi.org/10.1590/1980-5373-mr-2016-1043

(27). J.A.S. Costa, C.M. Paranhos, J. Clean. Prod. 192 (2018) 688–697. Crossref DOI: https://doi.org/10.1016/j.jclepro.2018.05.028

(28). K.K. Larbi, Synthesis of high-purity silicon from rice husks. MS.C. thesis, University of Toronto, 2010.

(29). F. Ledesma E., R. Acosta C., L. Garrido M., D. Polanco I., C. Guarnaluce D., J. Mater. Environ. Sci. 6 (2015) 114–118.

(30). R.A. Bakar, R. Yahya, S.N. Gan, Procedia Chemistry 19 (2016) 189–195. Crossref DOI: https://doi.org/10.1016/j.proche.2016.03.092

(31). I.B. Ugheoke, O. Mamat, Maejo Int. J. Sci. Technol. 6 (2012) 430–448.

(32). K.A. Matori, M.M. Haslinawati, Z.A. Wahab, H.A.A. Sidek, T.K. Ban, W.A.W.A.K. Ghani, MASAUM Journal of Basic and Applied Sciences 1 (2009) 512–515.

(33). G.R. de Sensale, Cement Concrete Comp. 32 (2010) 718‒725. Crossref DOI: https://doi.org/10.1016/j.cemconcomp.2010.07.008

(34). J. Prasara, S.H. Gheewala, J. Clean. Prod. 167 (2018) 1020‒1028. Crossref DOI: https://doi.org/10.1016/j.jclepro.2016.11.042

(35). R. Jauberthie, F. Rendell, S. Tamba, I. Cisse, Constr. Build. Mater. 14 (2000) 419‒423. Crossref DOI: https://doi.org/10.1016/S0950-0618(00)00045-3

(36). Z.A. Mansurov, M.K. Atamanov, Z. Elemesova, B.T. Lesbaev, M.N. Chikradze, Combust. Explo. Shock 55 (2019) 402‒408. Crossref DOI: https://doi.org/10.1134/S0010508219040051

(37). V. Kannan, Constr. Build. Mater. 160 (2018) 169‒179. Crossref DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.043

(38). M.K. Atamanov, R. Amrousse, K. Hori, Z. Mansurov, Combust. Sci. Technol. 191 (2019) 645‒658. Crossref DOI: https://doi.org/10.1080/00102202.2018.1498848

(39). J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, M. Olazar, Ind. Eng. Chem. Res. 54 (2015) 7241‒7250. Crossref DOI: https://doi.org/10.1021/acs.iecr.5b01589

(40). S. Wardiyati, W.A. Adi, Deswita, IOP Conf. Ser.: Mater. Sci. Eng. 202 (2017). Crossref DOI: https://doi.org/10.1088/1757-899X/202/1/012059

(41). A. Mourhly, M. Khachani, A.El Hamidi, M. Kacimi, M. Halim, S. Arsalane, Nanomat. Nanotechno. 5 (2015). Crossref DOI: https://doi.org/10.5772/62033

(42). H.I. Meléndez-Ortiz, Y. Perera-Mercado, J.A. Mercado-Silva, Y. Olivares-Maldonado, G. Castruita, L.A. García-Cerda, Ceram. Int. 40 (2014) 9701‒9707. Crossref DOI: https://doi.org/10.1016/j.ceramint.2014.02.051

(43). J. Umeda, K. Kondoh, Ind. Crop. Prod. 32 (2010) 539‒544. Crossref DOI: https://doi.org/10.1016/j.indcrop.2010.07.002

Downloads

Published

28-12-2020

How to Cite

Kapizov, O., Azat, S., Askaruly, K., Zhantikeyev, U., Tauanov, Z., Bergeneva, N., & Satayeva, A. (2020). Perspectives of the Silicon Dioxide Production from Rice Husk in Kazakhstan: an Overview. Eurasian Chemico-Technological Journal, 22(4), 285‒293. https://doi.org/10.18321/ectj993

Issue

Section

Article

Most read articles by the same author(s)