Electrodeposition of Indium on Glassy Carbon from Tetrabutylammonium Chloride Containing Solutions

Authors

  • K. Avchukir Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi Str., Almaty, 050012, Kazakhstan
  • N. N. Yessaly Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi Str., Almaty, 050012, Kazakhstan
  • B. D. Burkitbayeva Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi Str., Almaty, 050012, Kazakhstan

DOI:

https://doi.org/10.18321/ectj826

Keywords:

indium, tetrabutylammonium chloride, electrocrystallization, stationary nucleation rate, saturation nucleus density, average grains radius

Abstract

The effectiveness of tetrabutylammonium chloride (TBACh) as inhibition additive of dendritic growth of indium has been investigated by means of cyclic voltammetry and chronoamperometry methods. The rotating disk electrode (RDE) method allowed the calculation of the diffusion coefficient of In3+ ions using the Levich equation, at 25 °C is 4.41 × 10–6 cm2/s. Diffusion coefficient of indium ions determined by chronoamperometry using the Cottrell law (6.63 × 10–6 cm2/s) is in consistent with the value calculated by the Levich equation. The addition of tetrabutylammonium ions to the electrolyte reduces the diffusion coefficient and inhibits the cathodic process by increasing the activation energy from 10.5 kJ/mol to 20.7 kJ/mol. The indium nucleation and growth on glassy carbon in chloride solutions was studied by single potentiostatic pulse techniques. The nucleation mechanism was evaluated by analyzing the influence of different TBACh ion concentration and applied potentials. The electrocrystallization mechanisms were determined by fitting the experimental non-dimensional current transients on the basis nucleation and growth model developed by Scharifker-Hills. The type of nucleation corresponding to the progressive three-dimensional nucleation with diffusion control is determined. Based on theoretical models of 3D multiple nucleation from the potentiostatic current transients were calculated nucleation characteristics, such as the stationary nucleation rate, saturation nucleus density and the average grains radius of indium deposits. The leveling action of TBACh on the electrodeposition of indium at concentration of 10-4 M was found.

References

(1). Q. Huang, K. Reuter, S. Amhed, L. Deligianni, L. T. Romankiw, S. Jaime, V. Charrier, J. Electrochem. Soc. 158 (2011) D57–D61. Crossref

(2). E. Barrado, S. García, J.A. Rodríguez, Y. Castrillejo, J. Electroanal. Chem. 823 (2017) 106–120. Crossref

(3). Y. Traore, S. Legeai, S. Diliberto, G. Arrachart, S. Pellet-Rostaing, M. Draye, Electrochim. Acta 58 (2011) 532–540. Crossref

(4). Y.H. Chung, C.W. Lee, J. Electrochem. Sci. Technol. 3 (2012) 1–13. Crossref

(5). C.M. Pettit, J.E. Garland, N.R. Etukudo, K.A. Assiongbon, S.B. Emery, D. Roy, Appl. Surf. Sci. 202 (2002) 33–46. Crossref

(6). M. Matsumiya, M. Sumi, Y. Uchino, I. Yanagi, Sep. Purif. Technol. 201 (2018) 25–29. Crossref

(7). J. Bi, J. Ao, M.J. Jeng, Q. Gao, Z. Zhang, G. Sun, Y. Zhang, W. Liu, F. Liu, Y. Sun, L.-B. Chang, J. Alloys Compd. 766 (2018) 178–185. Crossref

(8). Y.C. Liu, Y.C. Chen, Y.T. Hsieh, I.W. Sun, J. Phys. Chem. C 121 (2017) 8907–8913. Crossref

(9). A.A.C. Alcanfor, L.P.M. dos Santos, D.F. Dias, A.N. Correia, P. de Lima-Neto, Electrochim. Acta 235 (2017) 553–560. Crossref

(10). L. Li, Y. Ma, G. Gao, W. Wang, S. Guo, J. You, J, Xie, J. Alloy. Compd. 658 (2016) 774–779. Crossref

(11). B. Burkitbayeva, A. Argimbayeva, G. Rakhymbay, K. Avchukir, K. Tassibekov, M. Nauryzbayev, MATEC Web Conf. 96 (2017) Article #00005. Crossref

(12). L. Libo, L. Qi, W. Heng, Y. Xiuchun, T. Haiyan, X. Jingchen, W. Wentao, Rare Metal Mat. Eng. 44 (2015) 1374–1378. Crossref

(13). Y. Chung, C.-W. Lee, J. Electrochem. Sci. Technol. 4 (2013) 93–101. Crossref

(14). R.C. Valderrama, M. Miranda-Hernández, P.J. Sebastian, A.L. Ocampo, Electrochim. Acta 53 (2008) 3714–3721. Crossref

(15). M.-H. Yang, I.-W. Sun, J. Chin. Chem. Soc. 51 (2004) 253–260. Crossref

(16). K. Avchukir, B. Burkitbayeva, A. Argimbayeva, G. Rakhymbay, Chemical Journal of Kazakhstan 2 (2018) 197–207.

(17). K. Avchukir, B. Burkitbayeva, A. Argimbayeva, G. Rakhymbay, G.S. Beisenova, M.K. Nauryzbayev, Russ. J. Electrochem. 54 (2018) 1096–1103. Crossref

(18). K. Avchukir, B. Burkitbayeva, Vestnik KazNRTU 6 (2018) 475–481.

(19). C. Mele, B. Bozzini, J. Solid State Electr. 13 (2009) 1553–1559. Crossref

(20). Y. Wen, T. Wang, J. Cheng, J. Pan, G. Cao, Y. Yang, Electrochim. Acta 59 (2012) 64–68. Crossref

(21). Q. Zhang, X. Yu, Y. Hua, W. Xue, J. Appl. Electrochem. 45 (2015) 79–86. Crossref

(22). J.M. Wang, L. Zhang, C. Zhang, J.Q. Zhang, J. Power Sources 102 (2001) 139–143. Crossref

(23). C. Mele, S. Rondinini, L. D’Urzo, V. Romanello, E. Tondo, A. Minguzzi, A. Vertova, B. Bozzini, J. Solid State Electr. 13 (2009) 1577–1584. Crossref

(24). A.G. Muñoz, S.B. Saidman, J.B. Bessone, J. Electrochem. Soc. 146 (1999) 2123–2130. Crossref

(25). S. Omanovic, M. Metikos-Hukovic, Thin Solid Films 458 (2004) 52–62. Crossref

(26). Y.D. Gamburg, G. Zangari, Thermodynamics and Kinetics of Nucleation. In: Theory and Practice of Metal Electrodeposition. Springer, New York, NY, 2011, p. 97–122. Crossref

(27). B.R. Scharifker, J. Mostany, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 177 (1984) 13–23. Crossref

(28). A. Milchev, Russ. J. Electrochem. 44 (2008) 619–645. Crossref

(29). A. Milchev, L. Heerman, Electrochim. Acta 48 (2003) 2903–2913. Crossref

(30). J. Mostany, B.R. Scharifker, K. Saavedra, C. Borrás, Russ. J. Electrochem. 44 (2008) 652– 658. Crossref

(31). P. Altimari, F. Pagnanelli, Electrochim. Acta 206 (2016) 116–126. Crossref

(32). J. Kestin, H.E. Khalifa, R.J. Correia, J. Phys. Chem. Ref. Data 10 (1981) 57–70. Crossref

(33). B.N, Afanasiev, I.A. Cherepkova, Soveit Electrochemistry 22 (1986) 224–227.

(34). M. Benrraou, B.L. Bales, R. Zana, J. Phys. Chem. B 107 (203) 13432–13440. Crossref

(35). R. Fuchs-Godec, Colloid. Surfaces A 280 (2006) 130–139. Crossref

Downloads

Published

2019-06-30

How to Cite

Avchukir, K., Yessaly, N. N., & Burkitbayeva, B. D. (2019). Electrodeposition of Indium on Glassy Carbon from Tetrabutylammonium Chloride Containing Solutions. Eurasian Chemico-Technological Journal, 21(2), 157–163. https://doi.org/10.18321/ectj826

Issue

Section

Articles