Electrodeposition of Indium on Glassy Carbon from Tetrabutylammonium Chloride Containing Solutions

Authors

  • K. Avchukir Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi Str., Almaty, 050012, Kazakhstan
  • N. N. Yessaly Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi Str., Almaty, 050012, Kazakhstan
  • B. D. Burkitbayeva Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi Str., Almaty, 050012, Kazakhstan

DOI:

https://doi.org/10.18321/ectj826

Keywords:

indium, tetrabutylammonium chloride, electrocrystallization, stationary nucleation rate, saturation nucleus density, average grains radius

Abstract

The effectiveness of tetrabutylammonium chloride (TBACh) as inhibition additive of dendritic growth of indium has been investigated by means of cyclic voltammetry and chronoamperometry methods. The rotating disk electrode (RDE) method allowed the calculation of the diffusion coefficient of In3+ ions using the Levich equation, at 25 °C is 4.41 × 10–6 cm2/s. Diffusion coefficient of indium ions determined by chronoamperometry using the Cottrell law (6.63 × 10–6 cm2/s) is in consistent with the value calculated by the Levich equation. The addition of tetrabutylammonium ions to the electrolyte reduces the diffusion coefficient and inhibits the cathodic process by increasing the activation energy from 10.5 kJ/mol to 20.7 kJ/mol. The indium nucleation and growth on glassy carbon in chloride solutions was studied by single potentiostatic pulse techniques. The nucleation mechanism was evaluated by analyzing the influence of different TBACh ion concentration and applied potentials. The electrocrystallization mechanisms were determined by fitting the experimental non-dimensional current transients on the basis nucleation and growth model developed by Scharifker-Hills. The type of nucleation corresponding to the progressive three-dimensional nucleation with diffusion control is determined. Based on theoretical models of 3D multiple nucleation from the potentiostatic current transients were calculated nucleation characteristics, such as the stationary nucleation rate, saturation nucleus density and the average grains radius of indium deposits. The leveling action of TBACh on the electrodeposition of indium at concentration of 10-4 M was found.

References

(1). Q. Huang, K. Reuter, S. Amhed, L. Deligianni, L. T. Romankiw, S. Jaime, V. Charrier, J. Electrochem. Soc. 158 (2011) D57–D61. Crossref DOI: https://doi.org/10.1149/1.3518440

(2). E. Barrado, S. García, J.A. Rodríguez, Y. Castrillejo, J. Electroanal. Chem. 823 (2017) 106–120. Crossref DOI: https://doi.org/10.1016/j.jelechem.2018.06.004

(3). Y. Traore, S. Legeai, S. Diliberto, G. Arrachart, S. Pellet-Rostaing, M. Draye, Electrochim. Acta 58 (2011) 532–540. Crossref DOI: https://doi.org/10.1016/j.electacta.2011.09.085

(4). Y.H. Chung, C.W. Lee, J. Electrochem. Sci. Technol. 3 (2012) 1–13. Crossref DOI: https://doi.org/10.33961/JECST.2012.3.1.1

(5). C.M. Pettit, J.E. Garland, N.R. Etukudo, K.A. Assiongbon, S.B. Emery, D. Roy, Appl. Surf. Sci. 202 (2002) 33–46. Crossref DOI: https://doi.org/10.1016/S0169-4332(02)00798-5

(6). M. Matsumiya, M. Sumi, Y. Uchino, I. Yanagi, Sep. Purif. Technol. 201 (2018) 25–29. Crossref DOI: https://doi.org/10.1016/j.seppur.2018.02.027

(7). J. Bi, J. Ao, M.J. Jeng, Q. Gao, Z. Zhang, G. Sun, Y. Zhang, W. Liu, F. Liu, Y. Sun, L.-B. Chang, J. Alloys Compd. 766 (2018) 178–185. Crossref DOI: https://doi.org/10.1016/j.jallcom.2018.06.354

(8). Y.C. Liu, Y.C. Chen, Y.T. Hsieh, I.W. Sun, J. Phys. Chem. C 121 (2017) 8907–8913. Crossref DOI: https://doi.org/10.1021/acs.jpcc.7b01375

(9). A.A.C. Alcanfor, L.P.M. dos Santos, D.F. Dias, A.N. Correia, P. de Lima-Neto, Electrochim. Acta 235 (2017) 553–560. Crossref DOI: https://doi.org/10.1016/j.electacta.2017.03.082

(10). L. Li, Y. Ma, G. Gao, W. Wang, S. Guo, J. You, J, Xie, J. Alloy. Compd. 658 (2016) 774–779. Crossref DOI: https://doi.org/10.1016/j.jallcom.2015.11.005

(11). B. Burkitbayeva, A. Argimbayeva, G. Rakhymbay, K. Avchukir, K. Tassibekov, M. Nauryzbayev, MATEC Web Conf. 96 (2017) Article #00005. Crossref DOI: https://doi.org/10.1051/matecconf/20179600005

(12). L. Libo, L. Qi, W. Heng, Y. Xiuchun, T. Haiyan, X. Jingchen, W. Wentao, Rare Metal Mat. Eng. 44 (2015) 1374–1378. Crossref DOI: https://doi.org/10.1016/S1875-5372(15)30092-8

(13). Y. Chung, C.-W. Lee, J. Electrochem. Sci. Technol. 4 (2013) 93–101. Crossref DOI: https://doi.org/10.33961/JECST.2013.4.3.93

(14). R.C. Valderrama, M. Miranda-Hernández, P.J. Sebastian, A.L. Ocampo, Electrochim. Acta 53 (2008) 3714–3721. Crossref DOI: https://doi.org/10.1016/j.electacta.2007.11.069

(15). M.-H. Yang, I.-W. Sun, J. Chin. Chem. Soc. 51 (2004) 253–260. Crossref DOI: https://doi.org/10.1002/jccs.200400040

(16). K. Avchukir, B. Burkitbayeva, A. Argimbayeva, G. Rakhymbay, Chemical Journal of Kazakhstan 2 (2018) 197–207.

(17). K. Avchukir, B. Burkitbayeva, A. Argimbayeva, G. Rakhymbay, G.S. Beisenova, M.K. Nauryzbayev, Russ. J. Electrochem. 54 (2018) 1096–1103. Crossref DOI: https://doi.org/10.1134/S1023193518120042

(18). K. Avchukir, B. Burkitbayeva, Vestnik KazNRTU 6 (2018) 475–481.

(19). C. Mele, B. Bozzini, J. Solid State Electr. 13 (2009) 1553–1559. Crossref DOI: https://doi.org/10.1007/s10008-008-0724-y

(20). Y. Wen, T. Wang, J. Cheng, J. Pan, G. Cao, Y. Yang, Electrochim. Acta 59 (2012) 64–68. Crossref DOI: https://doi.org/10.1016/j.electacta.2011.10.042

(21). Q. Zhang, X. Yu, Y. Hua, W. Xue, J. Appl. Electrochem. 45 (2015) 79–86. Crossref DOI: https://doi.org/10.1007/s10800-014-0774-z

(22). J.M. Wang, L. Zhang, C. Zhang, J.Q. Zhang, J. Power Sources 102 (2001) 139–143. Crossref DOI: https://doi.org/10.1016/S0378-7753(01)00789-3

(23). C. Mele, S. Rondinini, L. D’Urzo, V. Romanello, E. Tondo, A. Minguzzi, A. Vertova, B. Bozzini, J. Solid State Electr. 13 (2009) 1577–1584. Crossref DOI: https://doi.org/10.1007/s10008-008-0732-y

(24). A.G. Muñoz, S.B. Saidman, J.B. Bessone, J. Electrochem. Soc. 146 (1999) 2123–2130. Crossref DOI: https://doi.org/10.1149/1.1391902

(25). S. Omanovic, M. Metikos-Hukovic, Thin Solid Films 458 (2004) 52–62. Crossref DOI: https://doi.org/10.1016/j.tsf.2003.11.271

(26). Y.D. Gamburg, G. Zangari, Thermodynamics and Kinetics of Nucleation. In: Theory and Practice of Metal Electrodeposition. Springer, New York, NY, 2011, p. 97–122. Crossref DOI: https://doi.org/10.1007/978-1-4419-9669-5_5

(27). B.R. Scharifker, J. Mostany, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 177 (1984) 13–23. Crossref DOI: https://doi.org/10.1016/0022-0728(84)80207-7

(28). A. Milchev, Russ. J. Electrochem. 44 (2008) 619–645. Crossref DOI: https://doi.org/10.1134/S1023193508060025

(29). A. Milchev, L. Heerman, Electrochim. Acta 48 (2003) 2903–2913. Crossref DOI: https://doi.org/10.1016/S0013-4686(03)00355-4

(30). J. Mostany, B.R. Scharifker, K. Saavedra, C. Borrás, Russ. J. Electrochem. 44 (2008) 652– 658. Crossref DOI: https://doi.org/10.1134/S1023193508060049

(31). P. Altimari, F. Pagnanelli, Electrochim. Acta 206 (2016) 116–126. Crossref DOI: https://doi.org/10.1016/j.electacta.2016.04.094

(32). J. Kestin, H.E. Khalifa, R.J. Correia, J. Phys. Chem. Ref. Data 10 (1981) 57–70. Crossref DOI: https://doi.org/10.1063/1.555640

(33). B.N, Afanasiev, I.A. Cherepkova, Soveit Electrochemistry 22 (1986) 224–227.

(34). M. Benrraou, B.L. Bales, R. Zana, J. Phys. Chem. B 107 (203) 13432–13440. Crossref DOI: https://doi.org/10.1021/jp021714u

(35). R. Fuchs-Godec, Colloid. Surfaces A 280 (2006) 130–139. Crossref DOI: https://doi.org/10.1016/j.colsurfa.2006.01.046

Downloads

Published

30-06-2019

How to Cite

Avchukir, K., Yessaly, N. N., & Burkitbayeva, B. D. (2019). Electrodeposition of Indium on Glassy Carbon from Tetrabutylammonium Chloride Containing Solutions. Eurasian Chemico-Technological Journal, 21(2), 157–163. https://doi.org/10.18321/ectj826

Issue

Section

Articles