Conductive Polymer/SiO2 Composite as an Anticorrosive Coating Against Carbon Dioxide Corrosion of Mild Steel. A Simulation Study

  • K. Avchukir Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi str., Almaty, Kazakhstan
  • B. D. Burkitbayeva Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 96a Tole bi str., Almaty, Kazakhstan
Keywords: Mild steel, Carbon dioxide corrosion, Polypyrrole, Silicon dioxide, Corrosion simulation

Abstract

In this work corrosion of mild steel affected by carbon dioxide was studied using a simulation model developed by Nordsveen M. and Nesic S. Using this comprehensive model of the uniform corrosion made possible to predict of corrosion rate of steel in the carbonic acid medium and the influence of different conditions on the anticorrosive property of coated electrode has been investigated. 1D model of corrosion process includes Butler-Volmer and Tafel equations and takes into account both the kinetics of anodic dissolution of an iron and electrochemical discharge of carbonic acid, water and hydrogen ions. The model has been created in COMSOL Multiphysics software and further improvement of this model allowed studying the influence of parameters such as solution composition, the partial pressure of CO2, temperature and flow velocity of the solution on the corrosion rate of the steel. The results of numerical simulation demonstrate that the use of conductive polymerpolypyrrole/ SiO2 composite as an anti-corrosive resin coating reduces the corrosion rate of mild steel by 7 times or more, depending on pH, temperature and flow rate. Furthermore, increasing of flow velocity from 0.1 to 10 m/s affects to the removal of corrosion products from the surface of mild steel and as a result corrosion rate raises from 0.3 to 0.45 mm/year at a temperature of 80 °C and pH=4.

References

(1). S. Nesic, J. Postlethwaite, S. Olsen, Corrosion 52 (1996) 280–294. Crossref

(2). M. Nordsveen, S. Nešić, R. Nyborg, A. Stangeland, Corrosion 59 (2003) 443–456. Crossref

(3). S. Nešić, M. Nordsveen, R. Nyborg, A. Stangeland, Corrosion 59 (2003) 489–497. Crossref

(4). S. Nešić, K.-L.J. Lee, Corrosion 59 (2003) 616– 628. Crossref

(5). R. Barker, I. Al Shaaili, R.A. De Motte, D. Burkle, T. Charpentier, S.M. Vargas, A. Neville, Appl. Surf. Sci. 469 (2019) 135–145. Crossref

(6). Q. Zhao, J. Guo, G. Cui, T. Han, Yanhua Wu, Colloid. Surface. B 194 (2020) 111150. Crossref

(7). M.A.J. Mazumder, H.A. Al-Muallem, M. Faiz, S.A. Ali, Corros. Sci. 87 (2014) 187–198. Crossref

(8). H. Mansoori, D. Young, B. Brown, M. Singer, J. Nat. Gas Sci. Eng. 59 (2018) 287–296. Crossref

(9). Yu.P. Khodyrev, E.S. Batyeva, E.K. Badeeva, E.V. Platova, L. Tiwari, O.G. Sinyashin, Corros. Sci. 53 (2011) 976–983. Crossref

(10). M.W.S. Jawich, G.A. Oweimreen, S.A. Ali, Corros. Sci. 65 (2012) 104–112. Crossref

(11). X. Guan, D. Zhang, J. Wang, Y. Jin, Y. Li, J. Nat. Gas Sci. Eng. 37 (2017) 199–216. Crossref

(12). Q.H. Zhang, B.S. Hou, N. Xu, H.F. Liu, G.A. Zhang, J. Taiwan Inst. Chem. E 96 (2019) 588– 598. Crossref

(13). R. De Marco, Z.-T. Jiang, D. John, M. Sercombe, B. Kinsella, Electrochim. Acta 52 (2007) 3746– 3750. Crossref

(14). A.A. Abd, S.Z. Naji, A.S. Hashim, Eng. Fail. Anal. 105 (2019) 638–646. Crossref

(15). I. Jevremović, M. Singer, S. Nešić, V. Miskovic- Stanković, Corros. Sci. 77 (2013) 265–272. Crossref

(16). D.E. Tallman, Y. Pae, G.P. Bierwagen, Corrosion 55 (1999) 779–786. Crossref

(17). P. Sambyal, G. Ruhi, R. Dhawan, S.K. Dhawan, Surf. Coat. Tech. 303 (2016) 362–371. Crossref

(18). G. Ruhi, O.P. Modi, S.K. Dhawan, Synthetic Met. 200 (2015) 24–39. Crossref

(19). P. Sambyal, G. Ruhi, S.K. Dhawan, B.M.S. Bisht, S.P. Gairola, Prog. Org. Coat. 119 (2018) 203–213. Crossref

(20). S.A. Kumar, H. Bhandari, C. Sharma, F. Khatoon, S.K Dhawan, Polym. Int. 62 (2013) 1192–1201. Crossref

(21). J.P. Lu, L. Chen, R.G. Song, Surf. Eng. 35 (2019) 440–449. Crossref

(22). N. Jadhav, S. Kasisomayajula, V.J. Gelling, Front. Mater. 7 (2020). Crossref

(23). M. Mobin, R. Alam, J. Aslam, J. Mater. Eng. Perform. 25 (2016) 3017–3030. Crossref

(24). X. Shi, T.A. Nguyen, Z. Suo, Y. Liu, R. Avci, Surf. Coat. Tech. 204 (2009) 237–245. Crossref

(25). O. Grari, A.E. Taouil, L. Dhouibi, C.C. Buron, F. Lallemand, Prog. Org. Coat. 88 (2015) 48– 53. Crossref

(26). G. Ruhi, H. Bhandari, S.K. Dhawan, Prog. Org. Coat. 77 (2014) 1484–1498. Crossref

(27). V.T.H. Van, T.T.X. Hang, P.T. Nam, N.T. Phuong, N.T. Thom, D. Devilliers, D.T.M. Thanh, J. Nanosci. Nanotechno. 18 (2017) 4189–4195. Crossref

(28). COMSOL Myltiphysics, Carbon dioxide corrosion in steel pipes, (n.d.) 1–18. URL

(29). A. Asan, G. Asan, Journal of the Turkish Chemical Society Section B: Chemical Engineering 2 (2019)133–136.

(30). A. Kahyarian, S. Nesic, Corros. Sci. 173 (2020) 108719. Crossref

(31). A. Kahyarian, M. Singer, S. Nesic, J. Nat. Gas Sci. Eng. 29 (2016) 530–549. Crossref

Published
2020-12-28
How to Cite
[1]
K. Avchukir and B. Burkitbayeva, “Conductive Polymer/SiO2 Composite as an Anticorrosive Coating Against Carbon Dioxide Corrosion of Mild Steel. A Simulation Study”, Eurasian Chem.-Technol. J., vol. 22, no. 4, pp. 295-303, Dec. 2020.
Section
Articles