Activated Carbons from Miscanthus Straw for Cleaning Water Bodies in Kazakhstan

Authors

  • K. E. Abit Al-Farabi Kazakh National University, Center of Physical Chemical Methods of Research and Analysis, 96a Tole bi str., Almaty, Kazakhstan
  • L. Carlsen Awareness Center, Linkøpingvej 35, Dk-4000 Roskilde, Denmark
  • A. A. Nurzhanova Institute of Plant Biology and Biotechnology, 45 Timiryazev str., Almaty, Kazakhstan
  • M. K. Nauryzbaev Al-Farabi Kazakh National University, Center of Physical Chemical Methods of Research and Analysis, 96a Tole bi str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj867

Keywords:

activated carbons, heavy metals, miscanthus straw, carbonization, activation, adsorption

Abstract

Pollution of water bodies by heavy metals is an acute problem in Kazakhstan. Hence, search for and implementation of sustainable environmental technologies for water purification is of high priority. Activated carbon appears as an appropriate material as reflected in a number of previous studies. Due to a growing interest in low-cost active coals from renewable, rapidly recovering raw materials, especially for the purification of drinking water and wastewater, special attention has been in recent years been paid to the preparation activated carbons from some types of agricultural by-products. Along these lines a technology for producing new carbon-containing sorbents, i.e., activated carbon from Miscanthus straw (Мiscanthus x giganteus) is reported. The method of preparation, type of reactor, experimental conditions and the influence of the selected initial material on the properties of the resulting activated carbons are discussed. The activation of the primarily carbonized material in super-heated steam creates an activated coal material with a specific surface area of 541.9 m2/g and a specific pore volume of 0.232 cm3/g. The possible application for purification of water bodies from selected heavy metals was studied by estimation of the sorption capacity of the generated active coal material towards selected metal ions. The adsorption capacity for copper, zinc and lead ions is 90, 100, 500 mg/L, which allows to consider obtained by this method AC as an attractive alternative to traditional coal sorbents.

References

(1). S.I. Rozanov, General ecology [Obshchaya ekologiya]. SPb., "Doe" publishing house, 2001, 288 p. (in Russian).

(2). G.W. VanLoon, S.J. Duffy, Environmental chemistry. A global perspective. Oxford university press. 2005, 515 р.

(3). V.K. Bishimbayev, News of the National Academy of Sciences of the Republic of Kazakhstan (chemical series) [Izvestija Nacional'noj Akademii Nauk Respubliki Kazahstan (himicheskaja serija)] 1 (2011) 58– 65 (in Russian).

(4). S.I. Varlamova, E.S. Klimov, University news. North-Caucasian Region. Technical sciences series [Izvestija vuzov. Severo-Kavkazskij region. Tehnicheskie nauki] 2 (2005) 163‒168 (in Russian).

(5). I.A. Tarkovskaya, One hundred professions of coal, Kiev, Naukova Dumka. 1990, 200 p. (in Russian).

(6). S. Wong, N. Ngadi, I.M. Inuwa, O. Hassan. J. Clean. Prod. 175 (2018) 361‒375. Crossref

(7). C.L. Wilson, Coal-Bridge to the Future: Report of the World Coal Study, Ballinger, Cambridge, MA, 1980, p. 263.

(8). A.Yu. Sokolov, S.V. Nechipurenko, S.A. Efremov, Chemical Bulletin of Kazakh National University [Vestnik KazNU. Serija himicheskaja] 4 (2006) 117‒120 (in Russian).

(9). E.R. Valinurova, A.R. Gimaeva, F.Kh. Kudasheva, Bulletin of Bashkir University [Vestnik Bashkirskogo Universiteta] 14 (2009) 385–388. (In Russian)

(10). K.O. Adebowale, I.E. Unuabonah, B.I. Olu- Owolabi, Appl. Clay Sci. 29 (2005) 145–148. Crossref

(11). M. Ahmedna, W.E. Marshall, R.M. Rao, Bioresource Technol. 71 (2000) 113–123. Crossref

(12). A. Aygün, S. Yenisoy-Karakaş, I. Duman. Micropor. Mesopor. Mat. 66 (2003) 189–195. Crossref

(13). N. Arena, J. Lee, R. Clift, J. Clean. Prod. 125 (2016) 68–77. Crossref

(14). A.C. Lua, T. Yang, J.Guo, J. Anal. Appl. Pyrol. 72 (2004) 279–287. Crossref

(15). N. Kannan, M.M. Sundaram, Dyes Pigments 51 (2001) 25–40. Crossref

(16). Y. Qiu, Z. Zheng, Z. Zhou, G.D. Sheng. Bioresource Technol. 100 (2009) 5348–5351. Crossref

(17). O.M. Merinova, T.V. Noskova, International Student Scientific Bulletin [Mezhdunarodnyj studencheskij nauchnyj vestnik] 3 (4) (2015) 14175.

(18). M.B. Jones, M. Walsh, Miscanthus for energy and fibre. Origins and Taxonomy of Miscanthus. James & James Publishers, London, 2001.

(19). F. Nsanganwimana, B. Pourrut, M. Mench, F. Douay, J. Environ. Manage. 143 (2014) 123– 134. Crossref

(20). B. Pidlisnyuk, L. Erickson, S. Kharchenko, T. Stefanovska, Journal of Environmental Protection 5 (2014) 723–730. Crossref

(21). A. Ridošková, A. Pelfrêne, F. Douay, P. Pelcová, V. Smolíková,V. Adam, Environ. Toxicol. Chem. 38 (2019) 321–328. Crossref

(22). V.V. Pidlisnyuk, I.A. Soloshich, Bioenergy as a perspective direction for implementation sustainability. In a Book: Socioekonomicke a Environmentalni aspekty udrzitelnehorozvoje. Marie Heskova a kol., Vysoka Skola Evropskych Studii, Ceske Budejobice: Czech Republic. 2013, p. 191–195.

(23). A.E. Daraban, Ş. Jurcoane, I. Voicea, G. Voicu, Agriculture and Agricultural Science Procedia 6 (2015) 538–544. DOI:10.1016/j. aaspro.2015.08.082

(24). R. Michel, N. Mischler, B. Azambre, G. Finqueneisel, J. Machnikowski, P. Rutkowski, T. Zimny, J.V. Weber, Environ. Chem. Lett. 4 (2006) 185–189. Crossref

(25). E. Hodgson, A. Lewys-James, S. Rao Ravella, S. Thomas-Jones, W. Perkins, J. Gallagher, Bioresource Technol. 214 (2016) 574–581. Crossref

(26). T. Shim, J. Yoo, C. Ryu, Y.-K. Park, J. Jung, Bioresource Technol. 197 (2015) 85–90. Crossref

(27). C. Salvatore, A. Bruno, F. Gisele, Z. Thierry, V.W. Jean, Environ. Chem. Lett. 4 (2006) 75‒78. Crossref

(28). New Phytotechnology for Cleaning Contaminat ed Military Sites. NATO SPS MYP G4687.

(29). R. Zanzi, X. Bai, P. Capdevila and E. Bjornbom, Pyrolysis of biomass in presence of steam for production of activated carbon, liquid and gaseous fuels, Proc. of 6th World Congress on Chemical Engineering, Melbourne, Australia, 1–8 (2001).

(30). GOST 33625-2015, Charcoal. Standard Technical Analysis Method, M.: Standartinform, 2016, 5 p. (in Russian).

(31). M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87 (2015) 1051‒1069. Crossref

(32). GOST 4453-74, Active charcoal clarifying wood powder M.: Publishing house of standards 1993, 21 p. (in Russian).

Downloads

Published

2019-09-30

How to Cite

Abit, K. E., Carlsen, L., Nurzhanova, A. A., & Nauryzbaev, M. K. (2019). Activated Carbons from Miscanthus Straw for Cleaning Water Bodies in Kazakhstan. Eurasian Chemico-Technological Journal, 21(3), 259–267. https://doi.org/10.18321/ectj867

Issue

Section

Articles