Application of Carbons Produced from Rice Husk in the Process of Capacitive Deionization

Authors

  • V. Pavlenko Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan
  • Zh. Supiyeva Institute of Combustion Problems, 172 Bogenbay Batyr str., Almaty, Kazakhstan; al-Farabi Kazakh National University, 71 al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj996

Keywords:

Activated carbon, Rice husk, Capacitive deionization, Electric double layer, Low-temperature nitrogen adsorption

Abstract

Nanoporous carbon materials are well recognized as the main components of electrodes in capacitive deionization. Herein, the activated carbons were produced based on rice husk which is an abundant waste material in southern regions of Kazakhstan. The resulting carbons were characterized electrochemically by comparing their performance with well-known brands of commercial porous carbons (i.e. Norit DLC Super 30, Kuraray YP 50F). The features of carbon/ carbon electrochemical cells were analyzed using the means of galvanostatic cycling with potential limitation and cyclic voltammetry. Whilst the surface morphology and elemental composition of carbons were observed using scanning electron microscopy combined with energy dispersive X-ray spectroscopy. Using the method of low-temperature nitrogen adsorption it has been established that the specific surface of home-made carbon produced based on rice husk is equal to 2290 m2g-1. The salt adsorption analysis has been performed using different concentrations of inlet solutions of sodium chloride. Our study has shown that the manufacturing and application of activated carbons based on rice husk can be highly efficient because the resulting electrode materials exhibit a high electrosorption capacity of 20.02 mg g-1, which exceeds similar values obtained in the case of application of commercial porous carbons.

References

(1). J.C. Farmer, D.V. Fix, G.V. Mack, R.W. Pekala, J.F. Poco, J. Electrochem. Soc. 143 (1996) 159– 169. Crossref

(2). P. Xu, J.E. Drewes, D. Heil, G. Wang, Water Res. 42 (2008) 2605–2617. Crossref

(3). R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, J. Phys. Chem. Lett. 1 (2010) 205–210. Crossref

(4). E. Pamete Yambou, B. Gorska, V. Pavlenko, F. Béguin, Electrochim. Acta 350 (2020) 136416. Crossref

(5). Y.J. Kim, J.H. Choi, Water Res. 44 (2010) 990– 996. Crossref

(6). Y. Gao, L.K. Pan, H.B. Li, Y.P. Zhang, Z.J. Zhang, Y.W. Chen, Z. Sun, Thin Solid Films 517 (2009) 1616–1619. Crossref

(7). Endarko, N. Fadilah, D. Anggoro, AIP Conference Proceedings 1719 (2016) 030026. Crossref

(8). D. Anggoro, Endarko, Advanced Materials Research Submitted 1112 (2014) 271–274. Crossref

(9). L. Chang, Y. Yu, X. Duan, W. Liu, Sep. Sci. Technol. 48 (2013) 359–365. Crossref

(10). B. Jia, W. Zhang, Nanoscale Res. Lett. 11 (2016) 64. Crossref

(11). D.A. Nisa, Endarko, IOP Conf. Ser.: Mater. Sci. Eng. 214 (2017) 012024. Crossref

(12). S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, ACS Appl. Mater. Interfaces 4 (2012) 1194−1199. Crossref

(13). C. Feng, Y.-A. Chen, C.-P. Yu, Chemosphere 208 (2018) 285−293. Crossref

(14). Y. Bouhadana, E. Avraham, M. Noked, M. Ben- Tzion, A. Soffer, D. Aurbach, J. Phys. Chem. C 115 (2011) 16567–16573. Crossref

(15). S.K. Sami, J.Y. Seo, S-E. Hyeon, Md. S.A. Shershah, P.-J. Yoo, C.-H. Chung, RSC Adv. 8 (2018) 4182–4190. Crossref

(16). S. Rezma, I.B. Assaker, Y. Litaiem, R. Chtourou, A. Hafiane, H. Deleuze, Mater. Res. Bull. 111 (2019) 222–229. Crossref

(17). N.-L. Liu, S.-H. Sun, C.-H. Hou, Sep. Purif. Technol. 215 (2019) 403–409. Crossref

(18). G. Zhu, H. Wang, H. Xu, L. Zhang, J. Electroanal. Chem. 822 (2018) 81–88. Crossref

(19). D.K. Kohli, R. Singh, M.K. Singh, A. Singh, R.K. Khardekar, P. Ram Sankar, P. Tiwari, P.K. Gupta, Desalin. Water Treat. 49 (2012) 130– 135. Crossref

(20). V. Pavlenko, Q. Abbas, P. Przygocki, T. Kon’kova, Zh. Supiyeva, N. Abeykoon, N. Prikhodko, M. Bijsenbayev, A. Kurbatov, B.T. Lesbayev, Z. Mansurov, Eurasian Chem.- Technol. J. 20 (2018) 99–105. Crossref

(21). S. Azat, R. Busquets, V. Pavlenko, A. Kerimkulova, R. Whitby, Z. Mansurov, Applied Mechanics and Materials 467 (2014) 49‒51. Crossref

(22). J. Jagiello, J.P. Olivier, Carbon 55 (2013) 70– 80. Crossref

(23). F. Stoeckli, M.V. López-Ramón, D. Hugi- Cleary, A. Guillot, Carbon 39 (2001) 1115– 1116. Crossref

(24). Z.R. Ismagilov, N. V. Shikina, I.P. Andrievskaya, N.A. Rudina, Z.A. Mansurov, M.M. Burkitbaev, M.A. Biisenbaev, A.A. Kurmanbekov, Catal. Today 147 (2009) 58–65. Crossref

Downloads

Published

2020-12-28

How to Cite

Pavlenko, V., & Supiyeva, Z. (2020). Application of Carbons Produced from Rice Husk in the Process of Capacitive Deionization. Eurasian Chemico-Technological Journal, 22(4), 277‒284. https://doi.org/10.18321/ectj996

Issue

Section

Articles

Most read articles by the same author(s)