New Electrodes Prepared from Mineral and Plant Raw Materials of Kazakhstan

  • A. A. Atchabarova Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • R. R. Tokpayev Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • A. T. Kabulov Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • S. V. Nechipurenko Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • R. A. Nurmanova Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • S. A. Yefremov Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
  • M. K. Nauryzbayev Center of Physical Chemical Methods of Research and Analysis of al-Farabi Kazakh National University, 96A Tole bi st., 050012, Almaty, Kazakhstan
Keywords: electrode material shungite rock carbonization activation cyclic voltammetry carbon containing material

Abstract

Electrode materials were prepared from activated carbonizates of walnut shell, apricot pits and shungite rock from “Bakyrchik” deposit, East Kazakhstan. Physicochemical characteristics of the obtained samples were studied by the Brunauer-EmettTaylor method, scanning electron microscopy, Raman spectroscopy and other methods. Electrochemical properties of the obtained materials were studied by the method of cyclic voltammetry. It was found that the samples have an amorphous structure. Samples based on plant raw materials after hydrothermal carbonization at 240 °С during 24 h, have more homogeneous and developed surface. Specific surface area of carbon containing materials based on apricot pits is 1300 m2/g, for those on the based on mineral raw material, it is 153 m2/g. It was shown that materials after hydrothermal carbonization can be used for catalytic purposes and electrodes after thermal carbonization for analytical and electrocatalytic purposes.Electrode obtained by HTC have electrocatalytic activity. CSC 240 has high background current (slope i/Е is 43 mА V–1 cm–2), low potential of the hydrogen electroreduction (more positive by ~ 0.5 V than samples based on plant raw materials). The reaction of DA determination is more pronounced on the electrodes obtained by HTC 240 °C, 24 h, due to the nature, carbon structure and high specific surface area of obtained samples.

References

[1]. I. Svancara, K. Vytras, K. Kalcher, A. Walcarius, J.Wang, Electroanalysis 21 (1) (2009) 7–28.

[2]. R.L. McCreery, Chem. Rev. 108 (7) (2008) 2646–2687.

[3]. N. Yang, G. M. Swain, X. Jiang, Electroanalysis 28 (1) (2016) 27–34.

[4]. N. Eibisch, M. Helfrich, A. Don, R. Mikutta, A. Kruse, R. Ellerbrock, H. Flessa, J. Environ. Qual. 42 (5) (2014) 1565–1573.

[5]. By Bo Hu, K. Wang, L. Wu, Sh. Yu, M. Antonietti, M.-M. Titirici, Adv. Mater. 22 (7) (2010) 813–828.

[6]. G.K. Parshetti, S.K. Hoekman, R. Balasubramanian, Bioresour. Technol. 135 (2013) 683–689.

[7]. D. Salinas-Torres, D. Lozano-Castello, M.-M. Titirici, L. Zhao, L. Yu, E.Moralln, D. CazorlaAmoros, J. Mater. Chem. A 3 (30) (2013) 1558–15567.

[8]. M.-M. Titirici, M. Antonietti, The Royal Society of Chemistry 39 (1) (2010) 103–116.

[9]. B. Weber, E.A. Stadlbauer, S. Eichenauer, C. Koch, K. Albert, M. Kramer, D. Steffens, Journal of Biobased Materials and Bioenergy 7 (3) (2013) 367–375.

[10]. Yu.A. Savrasova, N.I. Bogdanovich, N.A. Makarevich, M.G. Beletskaya, Forest journal 1 (2012) 107–112 (in Russian).

[11]. M. Masakatsu, K. Harumi, T. Shikenobu, T. Kenji, A. Koji, J. Chem. Eng. Jap. 33 (2) (2000) 299–302.

[12]. Y. Uraki, Y. Tomai, M. Ogawa, S. Gaman, S. Tokura, BioResources 4 (1) (2009) 205–213.

[13]. B. Viswanathan, P. Indra Neel, T.K. Varadarajan Methods of activation and specific applications of carbon materials, Indian Institute of Technology, Madras (2009) 160 p.

[14]. W. Mingbo, Q. Zha, J. Qiu, Xia Han, Y. Guo, Z. Li, A.Yuan, X. Sun, Fuel (14-15) (2005) 1992–1997.

[15]. M. Juma, Z. Korenová, J. Markos, J. Annus, L.Jelemensky, Petroleum & Coal 48 (1) (2006) 15–26.

[16]. A.O. Yeremina, V.V. Golovina, N.V. Chesnokov, B.N. Kuznetsov, Journal of Siberian Federal University; Chemistry 1 (4) (2011) 100–107 (in Russian).

[17]. M.G. Beletskaya. Synthesis of carbon adsorbents by thermochemical activation of hydrolytic lignin with sodium hydroxide, Diss. CSc in tech. sciences: 05.21.03. (2014), Arkhangelsk, 153 p. (in Russian).

[18]. L. Li, X. Wang, S. Wang, Z. Cao, Zh. Wu, H. Wang, Y. Gao, J. Liu, Electroanalysis 28 (2016) 243–248.

[19]. M.M. Tusia, M. Brandalisea, R.W.R. VerjúlioSilvaa, O.V. Correaa, J.C. Villalbab, F.J. Anaissib, A.O. Netoa, M. Linardia, E.V. Spinacea, Preparation of PtRu/C electrocatalysts by hydrothermal carbonization using different carbon sources, Studies in Surface Science and Catalysis, Scientific Bases for the Preparation of Heterogeneous Catalysts, Proc. 10th Intern. Symp. Louvain-la-Neuve, Belgium, July 11-15. 175 (2010) 551–554.

[20]. S.V. Yefremova, Yu.M. Korolev, M.K. Nauryzbayev, S.A. Yefremov The structure of Kazakhstan shungite, Solid Fuel Chemistry 37 (1)(2003) 11–20.

[21]. S.A. Yefremov, M.K. Kazankapova, S.V. Nechipurenko, M.K. Nauryzbaev, The study of physico-chemical characteristics shungite minerals of Kazakhstan, Materials of the International Research and Practice Conference, Westwood 2 (2012) 322–328.

[22]. S.A. Yefremov. Production technology of carbonmineral materials based on shungite rocks, Doct. Dis.: 05.17.01. (2010), Almaty 240 p. (in Russian).

[23]. S.A. Efremov, Russ. J. Appl. Chem. 83 (1) (2010) 23–26.

[24]. R.R. Tokpayev, A.A. Atchabarova, S.A. Abdullayeva, S.V. Nechipurenko, S.A. Yefremov, M.K. Nauryzbayev, Eurasian Chemico-Technological Journal 17(3) (2015) 223–231.

[25]. T. Battumur, S.H. Mujawar, Q.T. Truong, S.B. Ambade, D.S. Lee, W. Lee, et al., Graphene/carbon nanotubes composites as a counter electrode for dyesensitized solar cells Curr. Appl. Phys. 12 (2012) 49–53.

[26]. U. Mehmood, A. Ur Rehman, H.M. Irshad, A. Ul Haq Khan, A. Al-Ahmed, Org. Electron. 35 (2016) 128–135.

[27]. V. Mani, M. Govindasamy, Sh.-M. Chen, R. Karthik, Sh.-T Huang, Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers, Microchimica Acta 183 (7) (2016) 2267–2275.

[28]. S.V. Nechipurenko. Technology for producing carbon containing materials and their use in the production process: Dis. CSc in tech. sciences: 05.17.01. (2007), Almaty 127 p. (in Russian).

[29]. R.R. Tokpayev. Carbon-metal catalysts based on mineral and plant raw materials: PhD Thesis. (2015), Almaty, 106 p. (in Russian).

[30]. A.A. Atchabarova, R.R. Tokpayev, S.V. Nechipurenko, M.K. Nauryzbayev, New carbon materials for the preparation of modified electrodes Bulletin KazNTU 4 (110) (2015) 484–488. (in Russian).

[31]. S.S. Glazkov, E.N. Levykin, M.V. Yenutina. Wood-polymer composition based on industry recycled materials, Chemistry and Chemical Engineering 44 (2) (2001) 142–145 (in Russian).

[32]. P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochemistry and Bioenergetics 41 (1) (1996) 121–125.

[33]. T. Selvaraju, R. Ramaraj, Electrochem. Commun. 5 (2003) 667–672.
Published
2016-05-25
How to Cite
[1]
A. Atchabarova, “New Electrodes Prepared from Mineral and Plant Raw Materials of Kazakhstan”, Eurasian Chem. Tech. J., vol. 18, no. 2, pp. 141-147, May 2016.
Section
Articles