Implementation of the Scalar Dissipation Rate in the REDIM Concept and its Validation for the Piloted Non-Premixed Turbulent Jet Flames
DOI:
https://doi.org/10.18321/ectj1100Abstract
In order to address the impact of the concentration gradients on the chemistry – turbulence interaction in turbulent flames, the REDIM reduced chemistry is constructed incorporating the scalar dissipation rate, which is a key quantity describing the turbulent mixing process. This is achieved by providing a variable gradient estimate in the REDIM evolution equation. In such case, the REDIM reduced chemistry is tabulated as a function of the reduced coordinates and the scalar dissipation rate as an additional progress variable. The constructed REDIM is based on a detailed transport model including the differential diffusion, and is validated for a piloted non-premixed turbulent jet flames (Sandia Flame D and E). The results show that the newly generated REDIM can reproduce the thermo-kinetic quantities very well, and the differential molecular diffusion effect can also be well captured.
References
(1). R.W. Bilger, Flow Turbul. Combust. 72 (2004) 93‒114. Crossref DOI: https://doi.org/10.1023/B:APPL.0000044404.24369.f1
(2). R.S. Cant, E. Mastorakos, An Introduction to Turbulent Reacting Flows, London: Imperial College Press, 2008. Crossref DOI: https://doi.org/10.1142/p498
(3). D.C. Haworth, S.B. Pope. Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations. In: Echekki T., Mastorakos E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol. 95 (2011). Springer, Dordrecht. Crossref DOI: https://doi.org/10.1007/978-94-007-0412-1_6
(4). S.B. Pope, Prog. Energ. Combust. Sci. 11 (1985) 119‒192. Crossref DOI: https://doi.org/10.1016/0360-1285(85)90002-4
(5). E.E. O’Brien. The probability density function (pdf) approach to reacting turbulent flows. In: Libby P.A., Williams F.A. (eds) Turbulent Reacting Flows. Topics in Applied Physics, vol 44 (1980). Springer, Berlin, Heidelberg. Crossref DOI: https://doi.org/10.1007/3540101926_11
(6). D.C. Haworth, Prog. Energ. Combust. Sci. 36 (2010) 168‒259. Crossref DOI: https://doi.org/10.1016/j.pecs.2009.09.003
(7). D.A. Goussis, U. Maas. Model Reduction for Combustion Chemistry. In: Echekki T., Mastorakos E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95 (2011). Springer, Dordrecht. Crossref DOI: https://doi.org/10.1007/978-94-007-0412-1_9
(8). U. Maas, A.S. Tomlin. Time-Scale Splitting- Based Mechanism Reduction. In: Battin- Leclerc F., Simmie J., Blurock E. (eds) Cleaner Combustion. Green Energy and Technology, 2013, Springer, London. Crossref DOI: https://doi.org/10.1007/978-1-4471-5307-8_18
(9). U. Maas, S.B. Pope, Combust. Flame 88 (1992) 239‒264. Crossref DOI: https://doi.org/10.1016/0010-2180(92)90034-M
(10). O. Gicquel, N. Darabiha, D. Thevenin, Proc. Combust. Inst. 28 (2000) 1901‒1908. Crossref DOI: https://doi.org/10.1016/S0082-0784(00)80594-9
(11). N. Peters, Prog. Energ. Combust. Sci. 10 (1984) 319‒339. Crossref DOI: https://doi.org/10.1016/0360-1285(84)90114-X
(12). V. Bykov, U. Maas, Combust. Theor. Model. 11 (2007) 839‒862. Crossref DOI: https://doi.org/10.1080/13647830701242531
(13). J.A. Van Oijen, L. De Goey, Combust. Sci. Technol. 161 (2000) 113‒137. Crossref DOI: https://doi.org/10.1080/00102200008935814
(14). J.C. Hill, Annu. Rev. Fluid Mech. 8 (1976) 135‒161. Crossref DOI: https://doi.org/10.1146/annurev.fl.08.010176.001031
(15). D.B. Spalding, Symp. (Int.) Combust. 13 (1971) 649‒657. Crossref DOI: https://doi.org/10.1016/S0082-0784(71)80067-X
(16). C. Yu, P. Breda, F. Minuzzi, M. Pfitzner, U. Maas, Phys. Fluids 33 (2021) 025110. Crossref DOI: https://doi.org/10.1063/5.0039160
(17). P.A. Libby, K. Bray, Combust. Flame 39 (1980) 33‒41. Crossref DOI: https://doi.org/10.1016/0010-2180(80)90004-8
(18). N. Peters, Turbulent Combustion, Cambridge: Cambridge University Press, 2001.
(19). S.B. Pope, Turbulent Flows, Cambridge: Cambridge University Press, 2000. Crossref DOI: https://doi.org/10.1017/CBO9780511840531
(20). J. Warnatz, U. Maas, R.W. Dibble, Combustion, Berlin Heidelberg: Springer, 2006.
(21). C. Dopazo, E.E. O’Brien, Acta Astronaut. 1 (1974) 1239‒1266. Crossref DOI: https://doi.org/10.1016/0094-5765(74)90050-2
(22). R.L. Curl, AIChE J. 9 (1963) 175‒181. Crossref DOI: https://doi.org/10.1002/aic.690090207
(23). S. Subramaniam, S.B. Pope, Combust. Flame 115 (1998) 487‒514. Crossref DOI: https://doi.org/10.1016/S0010-2180(98)00023-6
(24). R.W. Bilger, Physics of Fluids A: Fluid Dynamics 5 (1993) 436‒444. Crossref DOI: https://doi.org/10.1063/1.858867
(25). A.Y. Klimenko, S.B. Pope, Phys. Fluids 15 (2003) 1907‒1925. Crossref DOI: https://doi.org/10.1063/1.1575754
(26). C. Celis, L.F. da Silva, Flow Turbul. Combust. 94 (2015) 643‒689. Crossref DOI: https://doi.org/10.1007/s10494-015-9597-1
(27). U. Maas, D. Thevenin, Symp. (Int.) Combust. 27 (1998) 1183‒1189. Crossref DOI: https://doi.org/10.1016/S0082-0784(98)80521-3
(28). P. Golda, A. Blattmann, A. Neagos, V. Bykov, U. Maas, Combust. Theor. Model. 24 (2020) 377‒406. Crossref DOI: https://doi.org/10.1080/13647830.2019.1682198
(29). C. Yu, X. Li, C. Wu, A. Neagos, U. Maas, Energ. Fuel. 34 (2020) 16572‒16584. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.0c02539
(30). G. Steinhilber, U. Maas, Proc. Combust. Inst. 34 (2013) 217‒224. Crossref DOI: https://doi.org/10.1016/j.proci.2012.06.164
(31). C. Yu, F. Minuzzi, U. Maas, Combust. Theor. Model. 24 (2020) 682‒704. Crossref DOI: https://doi.org/10.1080/13647830.2020.1739336
(32). R. Schießl, V. Bykov, U. Maas, A. Abdelsamie, D. Thevenin, Proc. Combust. Inst. 36 (2017) 673‒679. Crossref DOI: https://doi.org/10.1016/j.proci.2016.07.089
(33). F.A. Williams, Combustion Theory, Boca Raton: CRC Press, 1985.
(34). E. Effelsberg, N. Peters, Symp. (Int.) Combust. 22 (1989) 693‒700. Crossref DOI: https://doi.org/10.1016/S0082-0784(89)80077-3
(35). R. Barlow, J.H. Frank, Symp. (Int.) Combust. 27 (1998) 1087‒1095. Crossref DOI: https://doi.org/10.1016/S0082-0784(98)80510-9
(36). U. Maas, J. Warnatz, Combust. Flame 74 (1988) 53‒69. Crossref DOI: https://doi.org/10.1016/0010-2180(88)90086-7
(37). J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, M.G. Mayer, Molecular Theory of Gases and Liquids, New York: Wiley, 1964.
(38). E. Eastman, J. Am. Chem. Soc. 50 (1928) 283– 291. Crossref DOI: https://doi.org/10.1021/ja01389a007
(39). G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, “GRI-Mech 3.0,” University of California Berkeley, 1999. [Online]. Available: URL [Accessed 22 5 2016].
(40). A. Neagos, V. Bykov, U. Maas, Combust. Sci. Technol. 186 (2014) 1502‒1516. Crossref DOI: https://doi.org/10.1080/00102202.2014.935125
(41). C. Strassacker, V. Bykov, M. Ulrich, Int. J. Heat Fluid Fl. 69 (2018) 185‒193. Crossref DOI: https://doi.org/10.1016/j.ijheatfluidflow.2017.12.011
(42). S. Burke, T. Schumann, Ind. Eng. Chem. 20 (1928) 998‒1004. Crossref DOI: https://doi.org/10.1021/ie50226a005
(43). M. Muradoglu, P. Jenny, S.B. Pope, J. Comput. Phys. 154 (1999) 342‒371. Crossref DOI: https://doi.org/10.1006/jcph.1999.6316
(44). P. Jenny, S.B. Pope, M. Muradoglu, J. Comput. Phys. 166 (2001) 218‒252. Crossref DOI: https://doi.org/10.1006/jcph.2000.6646
(45). H.G. Im, J.H. Chen, Combust. Flame 131 (2002) 246‒258. Crossref DOI: https://doi.org/10.1016/S0010-2180(02)00405-4
(46). R.R. Cao, S.B. Pope, Combust. Flame 143 (2005) 450‒470. Crossref DOI: https://doi.org/10.1016/j.combustflame.2005.08.018
(47). C. Yu, V. Bykov, U. Maas, Proc. Combust. Inst. 37 (2019) 2183‒2190. Crossref DOI: https://doi.org/10.1016/j.proci.2018.05.126
(48). J. Xu, S.B. Pope, Combust. Flame 123 (2000) 281‒307. Crossref DOI: https://doi.org/10.1016/S0010-2180(00)00155-3
(49). H. Pitsch, N. Peters, Combust. Flame 114 (1998) 26‒40. Crossref DOI: https://doi.org/10.1016/S0010-2180(97)00278-2
(50). H. Pitsch, H. Steiner, Proc. Combust. Inst. 28 (2000) 41‒49. Crossref DOI: https://doi.org/10.1016/S0082-0784(00)80193-9