Implementation of the Scalar Dissipation Rate in the REDIM Concept and its Validation for the Piloted Non-Premixed Turbulent Jet Flames

  • Chunkan Yu Karlsruhe Institute of Technology, Institute of Technical Thermodynamics, Engelbert-Arnold-Str. 4, D-76131, Karlsruhe, Germany
  • U. Maas Karlsruhe Institute of Technology, Institute of Technical Thermodynamics, Engelbert-Arnold-Str. 4, D-76131, Karlsruhe, Germany

Abstract

In order to address the impact of the concentration gradients on the chemistry – turbulence interaction in turbulent flames, the REDIM reduced chemistry is constructed incorporating the scalar dissipation rate, which is a key quantity describing the turbulent mixing process. This is achieved by providing a variable gradient estimate in the REDIM evolution equation. In such case, the REDIM reduced chemistry is tabulated as a function of the reduced coordinates and the scalar dissipation rate as an additional progress variable. The constructed REDIM is based on a detailed transport model including the differential diffusion, and is validated for a piloted non-premixed turbulent jet flames (Sandia Flame D and E). The results show that the newly generated REDIM can reproduce the thermo-kinetic quantities very well, and the differential molecular diffusion effect can also be well captured.

References

(1). R.W. Bilger, Flow Turbul. Combust. 72 (2004) 93‒114. Crossref

(2). R.S. Cant, E. Mastorakos, An Introduction to Turbulent Reacting Flows, London: Imperial College Press, 2008. Crossref

(3). D.C. Haworth, S.B. Pope. Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations. In: Echekki T., Mastorakos E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol. 95 (2011). Springer, Dordrecht. Crossref

(4). S.B. Pope, Prog. Energ. Combust. Sci. 11 (1985) 119‒192. Crossref

(5). E.E. O’Brien. The probability density function (pdf) approach to reacting turbulent flows. In: Libby P.A., Williams F.A. (eds) Turbulent Reacting Flows. Topics in Applied Physics, vol 44 (1980). Springer, Berlin, Heidelberg. Crossref

(6). D.C. Haworth, Prog. Energ. Combust. Sci. 36 (2010) 168‒259. Crossref

(7). D.A. Goussis, U. Maas. Model Reduction for Combustion Chemistry. In: Echekki T., Mastorakos E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95 (2011). Springer, Dordrecht. Crossref

(8). U. Maas, A.S. Tomlin. Time-Scale Splitting- Based Mechanism Reduction. In: Battin- Leclerc F., Simmie J., Blurock E. (eds) Cleaner Combustion. Green Energy and Technology, 2013, Springer, London. Crossref

(9). U. Maas, S.B. Pope, Combust. Flame 88 (1992) 239‒264. Crossref

(10). O. Gicquel, N. Darabiha, D. Thevenin, Proc. Combust. Inst. 28 (2000) 1901‒1908. Crossref

(11). N. Peters, Prog. Energ. Combust. Sci. 10 (1984) 319‒339. Crossref

(12). V. Bykov, U. Maas, Combust. Theor. Model. 11 (2007) 839‒862. Crossref

(13). J.A. Van Oijen, L. De Goey, Combust. Sci. Technol. 161 (2000) 113‒137. Crossref

(14). J.C. Hill, Annu. Rev. Fluid Mech. 8 (1976) 135‒161. Crossref

(15). D.B. Spalding, Symp. (Int.) Combust. 13 (1971) 649‒657. Crossref

(16). C. Yu, P. Breda, F. Minuzzi, M. Pfitzner, U. Maas, Phys. Fluids 33 (2021) 025110. Crossref

(17). P.A. Libby, K. Bray, Combust. Flame 39 (1980) 33‒41. Crossref

(18). N. Peters, Turbulent Combustion, Cambridge: Cambridge University Press, 2001.

(19). S.B. Pope, Turbulent Flows, Cambridge: Cambridge University Press, 2000. Crossref

(20). J. Warnatz, U. Maas, R.W. Dibble, Combustion, Berlin Heidelberg: Springer, 2006.

(21). C. Dopazo, E.E. O’Brien, Acta Astronaut. 1 (1974) 1239‒1266. Crossref

(22). R.L. Curl, AIChE J. 9 (1963) 175‒181. Crossref

(23). S. Subramaniam, S.B. Pope, Combust. Flame 115 (1998) 487‒514. Crossref

(24). R.W. Bilger, Physics of Fluids A: Fluid Dynamics 5 (1993) 436‒444. Crossref

(25). A.Y. Klimenko, S.B. Pope, Phys. Fluids 15 (2003) 1907‒1925. Crossref

(26). C. Celis, L.F. da Silva, Flow Turbul. Combust. 94 (2015) 643‒689. Crossref

(27). U. Maas, D. Thevenin, Symp. (Int.) Combust. 27 (1998) 1183‒1189. Crossref

(28). P. Golda, A. Blattmann, A. Neagos, V. Bykov, U. Maas, Combust. Theor. Model. 24 (2020) 377‒406. Crossref

(29). C. Yu, X. Li, C. Wu, A. Neagos, U. Maas, Energ. Fuel. 34 (2020) 16572‒16584. Crossref

(30). G. Steinhilber, U. Maas, Proc. Combust. Inst. 34 (2013) 217‒224. Crossref

(31). C. Yu, F. Minuzzi, U. Maas, Combust. Theor. Model. 24 (2020) 682‒704. Crossref

(32). R. Schießl, V. Bykov, U. Maas, A. Abdelsamie, D. Thevenin, Proc. Combust. Inst. 36 (2017) 673‒679. Crossref

(33). F.A. Williams, Combustion Theory, Boca Raton: CRC Press, 1985.

(34). E. Effelsberg, N. Peters, Symp. (Int.) Combust. 22 (1989) 693‒700. Crossref

(35). R. Barlow, J.H. Frank, Symp. (Int.) Combust. 27 (1998) 1087‒1095. Crossref

(36). U. Maas, J. Warnatz, Combust. Flame 74 (1988) 53‒69. Crossref

(37). J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, M.G. Mayer, Molecular Theory of Gases and Liquids, New York: Wiley, 1964.

(38). E. Eastman, J. Am. Chem. Soc. 50 (1928) 283– 291. Crossref

(39). G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, Z. Qin, “GRI-Mech 3.0,” University of California Berkeley, 1999. [Online]. Available: URL [Accessed 22 5 2016].

(40). A. Neagos, V. Bykov, U. Maas, Combust. Sci. Technol. 186 (2014) 1502‒1516. Crossref

(41). C. Strassacker, V. Bykov, M. Ulrich, Int. J. Heat Fluid Fl. 69 (2018) 185‒193. Crossref

(42). S. Burke, T. Schumann, Ind. Eng. Chem. 20 (1928) 998‒1004. Crossref

(43). M. Muradoglu, P. Jenny, S.B. Pope, J. Comput. Phys. 154 (1999) 342‒371. Crossref

(44). P. Jenny, S.B. Pope, M. Muradoglu, J. Comput. Phys. 166 (2001) 218‒252. Crossref

(45). H.G. Im, J.H. Chen, Combust. Flame 131 (2002) 246‒258. Crossref

(46). R.R. Cao, S.B. Pope, Combust. Flame 143 (2005) 450‒470. Crossref

(47). C. Yu, V. Bykov, U. Maas, Proc. Combust. Inst. 37 (2019) 2183‒2190. Crossref

(48). J. Xu, S.B. Pope, Combust. Flame 123 (2000) 281‒307. Crossref

(49). H. Pitsch, N. Peters, Combust. Flame 114 (1998) 26‒40. Crossref

(50). H. Pitsch, H. Steiner, Proc. Combust. Inst. 28 (2000) 41‒49. Crossref

Published
2021-11-10
How to Cite
[1]
C. Yu and U. Maas, “Implementation of the Scalar Dissipation Rate in the REDIM Concept and its Validation for the Piloted Non-Premixed Turbulent Jet Flames”, Eurasian Chem.-Technol. J., vol. 23, no. 3, pp. 169-179, Nov. 2021.
Section
Articles