A Unified Reduced Model for Auto-Ignition and Combustion in Premixed Systems

Authors

  • M.-S. Benzinger Karlsruhe Institute of Technology, Institute of Technical Thermodynamics, Engelbert-Arnold-Straße 4, Geb. 10.91, 76131 Karlsruhe, Germany
  • R. Schießl Karlsruhe Institute of Technology, Institute of Technical Thermodynamics, Engelbert-Arnold-Straße 4, Geb. 10.91, 76131 Karlsruhe, Germany
  • U. Maas Karlsruhe Institute of Technology, Institute of Technical Thermodynamics, Engelbert-Arnold-Straße 4, Geb. 10.91, 76131 Karlsruhe, Germany

DOI:

https://doi.org/10.18321/ectj175

Abstract

In this paper, two complementary chemistry model reduction methods for combustion simulations are further developed and combined. A progress variable model (PVM), which follows the idea of trajectory generated manifolds (TGLDM), is tailored for describing auto-ignition in situations where the influence of molecular transport on chemical reaction is weak, like auto-ignition in media with weak scalar gradients. The other model using the reaction diffusion manifold approach (REDIM) is designed for situations where the interaction of chemistry with molecular transport is essential. The formulation of both models is discussed and implementational issues of each single model are given. Also, each model is tested in its respective range of applicability (quasi-homogeneous combustion under steady/unsteady physical boundary conditions for the PVM, combustion in fields with essential scalar gradients for REDIM). The coupling of the two models into a unified model, which covers combustion in both regimes and during the transitions between regimes, is discussed, based on the global quasi-linearization concept (GQL).

References

[1]. S. Pope, Proc. Combust. Inst., 34 (2013) 1–31.

[2]. U. Maas, S. Pope, Symp. (Int.) Combust., 24 (1992) 103–112.

[3]. V. Bykov, U. Maas, Combust. Theory Model. 11(2007) 839–862.

[4]. J. Bauer, V. Bykov, U. Maas, ECCOMAS CFD, 2006.

[5]. J. Hirschfelder, C. Curtiss, R. Bird, Molecular theory of gases and liquids, Wiley, New York, 1965.

[6]. U. Maas, S. Pope, Combust. Flame 88 (1992) 239–264.

[7]. V. Bykov, U. Maas, Proc. Combust. Inst., 32 (2009) 561–568.

[8]. V. Bykov, V. Gol’dshtein, U. Maas, Combust. Theory Model. 12 (208) 389–405.

[9]. J. Van Oijen, L. De Goey, Combust. Sci. Tech. 161 (2000)113–137.

[10]. P.-D. Nguyen, L. Vervisch, V. Subramanian, V. Domingo, Combust. Flame 157 (2010) 43–61.

[11]. N. Peters, Symp. (Int.) Combust. 21 (1988) 1231–1250.

[12]. O. Gicquel, N. Darabiha, D. Thévenin, Symp. (Int.) Combust., 28 (2000) 1901–1908.

[13]. S. Lam, D. Coussis, Symp. (Int.) Combust., 22 (1989) 931–941.

[14]. J. Warnatz, U. Maas, R. Dibble, Combustion, 4th Edition, Springer, Berlin, 2006.

[15]. P. Wenzel, R.Steiner, C. Krüger, R. Schießl, C. Hofrath, U. Maas, SAE Technical Paper 2007-01-4137.

[16]. R. Kulkarni, W. Polifke, Journal of Combustion, vol. 2012, Article ID 780370 (2012).

[17]. R. Kulkarni, M. Zellhuber, W. Polifke, Combust. Theory Model. 17 (2013) 224–259.

[18]. M. Ihme, C.M. Cha, H. Pitsch, Proc. Combust. Inst., 30 (2005) 793–800.

[19]. D.A. Goussis, U. Maas, “Model reduction for combustion chemistry”, in: Echekki, T., Mastorakos, E. (Eds.), Turbulent Combustion Modeling, Vol. 95, Springer Netherlands, 2011, pp. 193-220.

[20]. E. Mastorakos, Prog. Energy Combust. Sci. 35 (2009) 57–97.

[21]. R.L. Gordon, A.R. Masri, E. Mastorakos, Combust. Theory Model. 13 (2009) 645–670.

[22]. S. Hajireza, F. Mauss, B. Sundén, Proc. Combust. Inst., 28 (2000) 1169–1175.

[23]. S. Pope, U. Maas, Mechanical and Aerospace Engineering Report: FDA (1993) 93–11.

[24]. U. Maas, J. Warnatz, Combust. Flame 74 (1988) 53–69.

[25]. C.D. Pierce, P. Moin, J. Fluid Mech. 504 (2004) 73–97.

[26]. V. Gravemeier, W. Wall, Combust. Flame 158 (2001) 1160–1170.

[27]. Y.-S. Niu, L. Vervisch, P.D. Tao, Combust. Flame 160 (4) (2013) 776–785.

[28]. G. Golub, C. Van Loan, Matrix computations, 4th Edition, Johns Hopkins University Pr., Baltimore, MD, 2013.

[29]. U. Maas, V. Bykov, Proc. Combust. Inst., 33 (2011) 1253–1259.

[30]. G. Steinhilber, U. Maas, Proc. Combust. Inst., 34 (2013) 217–224.

[31]. B. Yang, S. Pope, Combust. Flame 112 (1998) 85–112.

[32]. R.E. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University Press, 1961.

[33]. S.A. Smolyak, Soviet Math. Dkl. 4:240 (1963).

[34]. H.-J. Bungartz, T. Dornseifer, Sparse grids: Recent developments for elliptic partial differential equations.
In: Hackbusch, W., Wittum, G., (eds.): Multigrid Methods V, LNCSE 3, pp 45-70, Heidelberg, Berlin: Springer-Verlag
1998.

[35]. M. Griebel, Computing 61 (1998) 151–179 (1998).

[36]. M.-S. Benzinger, R. Schießl, U. Maas, Proc. 6th European Combust. Meeting, 2013, P5-90.

[37]. G. Faber, Mathematische Annalen 66:81 (1908).

[38]. H. Yserentant, Hierarchical bases, Vol. 2 of ICIAM 91, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992, pp. 256–276.

[39]. I. Daubechies, Ten lectures on wavelets, Vol. 61, SIAM, 1992.

[40]. J. Andrae, R. Head, Combust. Flame 156 (2009) 842–851.

[41]. S. Mosbach, H. Su, M. Kraft, A. Bhave, F. Mauss, Z. Wang, J.-X. Wang, International Journal of Engine Research 8 (2007) 41–50.

Downloads

Published

2014-09-30

How to Cite

Benzinger, M.-S., Schießl, R., & Maas, U. (2014). A Unified Reduced Model for Auto-Ignition and Combustion in Premixed Systems. Eurasian Chemico-Technological Journal, 16(2-3), 107–116. https://doi.org/10.18321/ectj175

Issue

Section

Articles