Numerical Simulation of Laminar and Turbulent Methane/Air Flames Based on a DRG-Derived Skeletal Mechanism

  • F. C. Minuzzi Reactive Fluid Mechanics Group, National Institute for Space Research - INPE, Rod. Presidente Dutra, km 40, 12630-000, Cachoeira Paulista, SP, Brazil
  • Ch. Yu Institute of Technical Thermodynamics, Karlsruhe Institute of Technology - KIT, Engelbert-Arnold-Strasse 4, 76131, Karlsruhe, Germany
  • U. Maas Institute of Technical Thermodynamics, Karlsruhe Institute of Technology - KIT, Engelbert-Arnold-Strasse 4, 76131, Karlsruhe, Germany
Keywords: Turbulence, Directed Relation Graph, Skeletal mechanism, Perfectly Stirred Reactor, Laminar flame

Abstract

 Simulation of turbulent flames using detailed chemical mechanisms is still a challenge in numerical combustion due to the large number of species and the stiffness of the system of governing equations. In this sense, strategies to reduce the size of the detailed model are necessary and one of such models is the well-known directed relation graph (DRG) method. In the present work, a DRG-derived skeletal mechanism developed using only one application for methane/ air simulations is presented and validated for auto-ignition times, laminar flame speed and counterflow flames. The skeletal mechanism is tested for varying the equivalence ratio (ϕ = 0.4, to 3) and pressure (p = 1 to 150 atm). The temperature spans the range from T = 1000 K to T = 2000 K. The relative error, compared with the detailed mechanism, of our proposed model for ignition delay times and flame speed are less than 10% for most of the parameters. The skeletal mechanism is also used to simulate the piloted turbulent jet Sandia Flame D. Results show that this skeletal mechanism can reproduce the main features of laminar and turbulent methane/air flames.

References

(1). H. An, W.M. Yang, A. Maghbouli, J. Li, K. Chua, Energ. Convers. Manage. 81 (2014) 51– 59. Crossref

(2). C. Yu, F. Minuzzi, U. Maas, Eurasian Chem. Tech. J. 20 (2018) 23–31. Crossref

(3). T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 3rd edn., R.T. Edwards, Inc, 2011.

(4). N. Peters, Turbulent combustion, Cambridge University Press, 2000. Crossref

(5). T. Turanyi, A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms, Springer, 2014. Crossref

(6). L. Vervisch, Numerical modeling of nonpremixed turbulent combustion, Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Heidelberg, 1999.

(7). K.K. Kuo, R. Acharya, Fundamentals of Turbulent and Multi-Phase Combustion, John Wiley & Sons, Inc, 2012. Crossref

(8). J. Warnatz, U. Maas, R.W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer-Verlag Berlin Heidelberg 2000.

(9). T. Lu, C. Law, Combust. Flame 146 (2006) 472– 483. Crossref

(10). T. Lu, C. Law, Proc. Combust. Inst. 30 (2005) 1333–1341. Crossref

(11). P. Pepiot-Desjardins, H. Pitsch, Combust. Flame 154 (2008) 67–81. Crossref

(12). R. Ranade, A. Sultan, A. Farooq, T. Echekki, Fuel 241 (2019) 625–636. Crossref

(13). M. Bodenstein, Zeitschrift für physikalische Chemie 85 (1913) 329–397.

(14). D. Chapman, L. Underhill, Journal of the Chemical Society, Transactions 103 (1913) 496–508. Crossref

(15). U. Maas, S.B. Pope, Combust. Flame 88 (1992) 239–264. Crossref

(16). O. Gicquel, N. Darabiha and D. Thevenin, Proc. Combust. Inst. 28 (2000) 1901–1908. Crossref

(17). V. Bykov, U. Maas, Combust. Theor. Model. 11 (2007) 839–862. Crossref

(18). V. Bykov, U. Maas, Proc. Combust. Inst. 31 (2007) 465–472. Crossref

(19). S. Lam, Combust. Sci. Technol. 85 (1993) 375– 404. Crossref

(20). S. Lam, D. Goussis, Symposium (International) on Combustion 22 (1989) 931–941. Crossref

(21). F. Williams, Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames. In: Murthy S.N.B. (eds) Turbulent Mixing in Nonreactive and Reactive Flows. Springer, Boston, MA, 1975, p. 189–208. Crossref

(22). C. Pierce, P. Moin, J. Fluid Mech. 504 (2004) 73–97. Crossref

(23). J. Oijen, L. Goey, Combust. Sci. Technol. 161 (2000) 113–137. Crossref

(24). T. Lu, C. Law, Combust. Flame 144 (2006) 24– 36. Crossref

(25). K. Niemeyer, C. Sung, M. Raju, Combust. Flame 157 (2010) 1760–1770. Crossref

(26). X. Wang, H. Liu, Z. Zheng, M. Yao, Energ. Fuel. 29 (2015) 1160–1171. Crossref

(27). Z. Luo, M. Plomer, T. Lu, S. Som, D. Longman, S. Sarathy, W. Pitz, Fuel 99 (2012) 143–153. Crossref

(28). H. Ng, S. Gan, J. Ng, K. Pang, Fuel 104 (2013) 620–634. Crossref

(29). K. Seshadri, T. Lu, O. Herbinet, S. Humer, U. Niemann, W. Pitz, R. Seiser, C. Law, Proc. Combust. Inst. 32 (2009) 1067–1074. Crossref

(30). Z. Luo, T. Lu, M. Maciaszek, S. Som, D. Longman, Energ. Fuel. 24 (2010) 6283–6293. Crossref

(31). W. Liu, A. Kelley, C. Law, Proc. Combust. Inst. 33 (2011) 995–1002. Crossref

(32). H. Yang, Z. Ren, T. Lu, G. Goldin, Combust. Theor. Model. 17 (2013) 167–183. Crossref

(33). R. Sankaran, E. Hawkes, J. Chen, T. Lu, C. Law, Proc. Combust. Inst. 31 (2007) 1291–1298. Crossref

(34). R. Barlow, J. Frank, Symposium (International) on Combustion 27 (1998) 1087–1095. Crossref

(35). International workshop on measurement and computation of turbulent nonpremixed flames, Available at: URL [Accessed 18 09 2014]

(36). T. Løvas, Model reduction techniques for chemical mechanisms (INTECH Open Access Publisher, Rijeka, 2012)

(37). L. Tosatto, B. Bennett, M. Smooke, Combust. Flame 160 (2013) 1572–1582. Crossref

(38). C. Yu, F. Minuzzi, V. Bykov, U. Maas, Combust. Sci. Technol. pp. 1–23, 2019. Crossref

(39). Chemical-Kinetic Mechanisms for Combustion Applications», San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, 2016. Available at: URL

(40). K. Niemeyer, C. Sung, Combust. Flame. 158 (2011) 1439–1443. Crossref

(41). Y. Shi, H. Ge, J. Brakora, R. Reitz, Energ, Fuel 24 (2010) 1646–1654. Crossref

(42). L. Liang, J. Stevens, J. Farrell, Proc. Combust. Inst. 32 (2009) 527–534. Crossref

(43). I. Reid, C. Robinson, D. Smith, Symposium (International) on Combustion 20 (1985) 1833– 1843. Crossref

(44). T. Lu, C. Law, Combust. Flame 154 (2008) 761– 774. Crossref

(45). H. Weller, G. Tabor, H. Jasak, C. Fureby, Computers in Physics 12 (1998) 620–631. Crossref

(46). R. Issa, J. Comput. Phys. 62 (1986) 40–65. Crossref

(47). T. Poinsot, M. Garcia, J. Senoner, L. Gicquel, G. Staffelbach, O. Vermorel, J. Sci. Comput. 49 (2011) 78–93. Crossref

(48). L. Gutierrez, J. Tamagno, S. Elaskar, J. Appl. Fluid Mech. 9 (2016) 669–682. Crossref

(49). S. Pope, Turbulent Flows, Cambridge University Press, 2000. Crossref

(50). N. Nordin, Complex chemistry modeling of diesel spray combustion, Ph.D. Thesis, Chalmers University of Technology, 2001.

(51). C.K. Law, Combustion Physics, Cambridge University Press, 2010.

(52). D.G, Goodwin, H.K. Moffat, R.L. Speth (2017), Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.3.0. Zenodo. Available at: URL

(53). U. Maas, Automatische reduktion von reaktionsmechanismen zur simulation reaktiver strömungen, Ph.D. Thesis, Institut für Technische Verbrennung, Universät Stuttgart, Germany, Stuttgart, 1993.

(54). F. Halter, C. Chauveau, N. Djebaïli-Chaumeix, I. Göklp, Proc. Combust. Inst. 30 (2005) 201‒208. Crossref

(55). S. Fischer, D. Markus, A. Ghorbani, U. Maas, Zeitschrift für Physikalische Chemie 231 (2017) 1773–1796. Crossref

(56). F. Minuzzi, C. Yu, U. Maas, Flow Turbul. Combust. 103 (2019) 963–984. Crossref

(57). D. C. Haworth, Progr. Energy Combust. Sci. 36 (2010) 168–259. Crossref

(58). S.B. Pope, Progr. Energy Combust. Sci. 11 (1985) 119–192. Crossref

Published
2020-06-30
How to Cite
[1]
F. Minuzzi, C. Yu, and U. Maas, “Numerical Simulation of Laminar and Turbulent Methane/Air Flames Based on a DRG-Derived Skeletal Mechanism”, Eurasian Chem.-Technol. J., vol. 22, no. 2, pp. 69-80, Jun. 2020.
Section
Articles