Numerical Simulation of Laminar and Turbulent Methane/Air Flames Based on a DRG-Derived Skeletal Mechanism
DOI:
https://doi.org/10.18321/ectj953Keywords:
Turbulence, Directed Relation Graph, Skeletal mechanism, Perfectly Stirred Reactor, Laminar flameAbstract
Simulation of turbulent flames using detailed chemical mechanisms is still a challenge in numerical combustion due to the large number of species and the stiffness of the system of governing equations. In this sense, strategies to reduce the size of the detailed model are necessary and one of such models is the well-known directed relation graph (DRG) method. In the present work, a DRG-derived skeletal mechanism developed using only one application for methane/ air simulations is presented and validated for auto-ignition times, laminar flame speed and counterflow flames. The skeletal mechanism is tested for varying the equivalence ratio (ϕ = 0.4, to 3) and pressure (p = 1 to 150 atm). The temperature spans the range from T = 1000 K to T = 2000 K. The relative error, compared with the detailed mechanism, of our proposed model for ignition delay times and flame speed are less than 10% for most of the parameters. The skeletal mechanism is also used to simulate the piloted turbulent jet Sandia Flame D. Results show that this skeletal mechanism can reproduce the main features of laminar and turbulent methane/air flames.
References
(1). H. An, W.M. Yang, A. Maghbouli, J. Li, K. Chua, Energ. Convers. Manage. 81 (2014) 51– 59. Crossref DOI: https://doi.org/10.1016/j.enconman.2014.02.012
(2). C. Yu, F. Minuzzi, U. Maas, Eurasian Chem. Tech. J. 20 (2018) 23–31. Crossref DOI: https://doi.org/10.18321/ectj705
(3). T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 3rd edn., R.T. Edwards, Inc, 2011.
(4). N. Peters, Turbulent combustion, Cambridge University Press, 2000. Crossref DOI: https://doi.org/10.1017/CBO9780511612701
(5). T. Turanyi, A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms, Springer, 2014. Crossref DOI: https://doi.org/10.1007/978-3-662-44562-4
(6). L. Vervisch, Numerical modeling of nonpremixed turbulent combustion, Proceedings of the Seventeenth International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Heidelberg, 1999.
(7). K.K. Kuo, R. Acharya, Fundamentals of Turbulent and Multi-Phase Combustion, John Wiley & Sons, Inc, 2012. Crossref DOI: https://doi.org/10.1002/9781118107683
(8). J. Warnatz, U. Maas, R.W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer-Verlag Berlin Heidelberg 2000.
(9). T. Lu, C. Law, Combust. Flame 146 (2006) 472– 483. Crossref DOI: https://doi.org/10.1016/j.combustflame.2006.04.017
(10). T. Lu, C. Law, Proc. Combust. Inst. 30 (2005) 1333–1341. Crossref DOI: https://doi.org/10.1016/j.proci.2004.08.145
(11). P. Pepiot-Desjardins, H. Pitsch, Combust. Flame 154 (2008) 67–81. Crossref DOI: https://doi.org/10.1016/j.combustflame.2007.10.020
(12). R. Ranade, A. Sultan, A. Farooq, T. Echekki, Fuel 241 (2019) 625–636. Crossref DOI: https://doi.org/10.1016/j.fuel.2018.12.082
(13). M. Bodenstein, Zeitschrift für physikalische Chemie 85 (1913) 329–397. DOI: https://doi.org/10.1515/zpch-1913-8512
(14). D. Chapman, L. Underhill, Journal of the Chemical Society, Transactions 103 (1913) 496–508. Crossref DOI: https://doi.org/10.1039/CT9130300496
(15). U. Maas, S.B. Pope, Combust. Flame 88 (1992) 239–264. Crossref DOI: https://doi.org/10.1016/0010-2180(92)90034-M
(16). O. Gicquel, N. Darabiha and D. Thevenin, Proc. Combust. Inst. 28 (2000) 1901–1908. Crossref DOI: https://doi.org/10.1016/S0082-0784(00)80594-9
(17). V. Bykov, U. Maas, Combust. Theor. Model. 11 (2007) 839–862. Crossref DOI: https://doi.org/10.1080/13647830701242531
(18). V. Bykov, U. Maas, Proc. Combust. Inst. 31 (2007) 465–472. Crossref DOI: https://doi.org/10.1016/j.proci.2006.08.104
(19). S. Lam, Combust. Sci. Technol. 85 (1993) 375– 404. Crossref DOI: https://doi.org/10.1080/00102209308924120
(20). S. Lam, D. Goussis, Symposium (International) on Combustion 22 (1989) 931–941. Crossref DOI: https://doi.org/10.1016/S0082-0784(89)80102-X
(21). F. Williams, Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames. In: Murthy S.N.B. (eds) Turbulent Mixing in Nonreactive and Reactive Flows. Springer, Boston, MA, 1975, p. 189–208. Crossref DOI: https://doi.org/10.1007/978-1-4615-8738-5_5
(22). C. Pierce, P. Moin, J. Fluid Mech. 504 (2004) 73–97. Crossref DOI: https://doi.org/10.1017/S0022112004008213
(23). J. Oijen, L. Goey, Combust. Sci. Technol. 161 (2000) 113–137. Crossref DOI: https://doi.org/10.1080/00102200008935814
(24). T. Lu, C. Law, Combust. Flame 144 (2006) 24– 36. Crossref DOI: https://doi.org/10.1016/j.combustflame.2005.02.015
(25). K. Niemeyer, C. Sung, M. Raju, Combust. Flame 157 (2010) 1760–1770. Crossref DOI: https://doi.org/10.1016/j.combustflame.2009.12.022
(26). X. Wang, H. Liu, Z. Zheng, M. Yao, Energ. Fuel. 29 (2015) 1160–1171. Crossref DOI: https://doi.org/10.1021/ef502142c
(27). Z. Luo, M. Plomer, T. Lu, S. Som, D. Longman, S. Sarathy, W. Pitz, Fuel 99 (2012) 143–153. Crossref DOI: https://doi.org/10.1016/j.fuel.2012.04.028
(28). H. Ng, S. Gan, J. Ng, K. Pang, Fuel 104 (2013) 620–634. Crossref DOI: https://doi.org/10.1016/j.fuel.2012.07.033
(29). K. Seshadri, T. Lu, O. Herbinet, S. Humer, U. Niemann, W. Pitz, R. Seiser, C. Law, Proc. Combust. Inst. 32 (2009) 1067–1074. Crossref DOI: https://doi.org/10.1016/j.proci.2008.06.215
(30). Z. Luo, T. Lu, M. Maciaszek, S. Som, D. Longman, Energ. Fuel. 24 (2010) 6283–6293. Crossref DOI: https://doi.org/10.1021/ef1012227
(31). W. Liu, A. Kelley, C. Law, Proc. Combust. Inst. 33 (2011) 995–1002. Crossref DOI: https://doi.org/10.1016/j.proci.2010.05.084
(32). H. Yang, Z. Ren, T. Lu, G. Goldin, Combust. Theor. Model. 17 (2013) 167–183. Crossref DOI: https://doi.org/10.1080/13647830.2012.733825
(33). R. Sankaran, E. Hawkes, J. Chen, T. Lu, C. Law, Proc. Combust. Inst. 31 (2007) 1291–1298. Crossref DOI: https://doi.org/10.1016/j.proci.2006.08.025
(34). R. Barlow, J. Frank, Symposium (International) on Combustion 27 (1998) 1087–1095. Crossref DOI: https://doi.org/10.1016/S0082-0784(98)80510-9
(35). International workshop on measurement and computation of turbulent nonpremixed flames, Available at: URL [Accessed 18 09 2014]
(36). T. Løvas, Model reduction techniques for chemical mechanisms (INTECH Open Access Publisher, Rijeka, 2012)
(37). L. Tosatto, B. Bennett, M. Smooke, Combust. Flame 160 (2013) 1572–1582. Crossref DOI: https://doi.org/10.1016/j.combustflame.2013.03.024
(38). C. Yu, F. Minuzzi, V. Bykov, U. Maas, Combust. Sci. Technol. pp. 1–23, 2019. Crossref DOI: https://doi.org/10.1080/00102202.2019.1625337
(39). Chemical-Kinetic Mechanisms for Combustion Applications», San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego, 2016. Available at: URL
(40). K. Niemeyer, C. Sung, Combust. Flame. 158 (2011) 1439–1443. Crossref DOI: https://doi.org/10.1016/j.combustflame.2010.12.010
(41). Y. Shi, H. Ge, J. Brakora, R. Reitz, Energ, Fuel 24 (2010) 1646–1654. Crossref DOI: https://doi.org/10.1021/ef901469p
(42). L. Liang, J. Stevens, J. Farrell, Proc. Combust. Inst. 32 (2009) 527–534. Crossref DOI: https://doi.org/10.1016/j.proci.2008.05.073
(43). I. Reid, C. Robinson, D. Smith, Symposium (International) on Combustion 20 (1985) 1833– 1843. Crossref DOI: https://doi.org/10.1016/S0082-0784(85)80681-0
(44). T. Lu, C. Law, Combust. Flame 154 (2008) 761– 774. Crossref DOI: https://doi.org/10.1016/j.combustflame.2008.04.025
(45). H. Weller, G. Tabor, H. Jasak, C. Fureby, Computers in Physics 12 (1998) 620–631. Crossref DOI: https://doi.org/10.1063/1.168744
(46). R. Issa, J. Comput. Phys. 62 (1986) 40–65. Crossref DOI: https://doi.org/10.1016/0021-9991(86)90099-9
(47). T. Poinsot, M. Garcia, J. Senoner, L. Gicquel, G. Staffelbach, O. Vermorel, J. Sci. Comput. 49 (2011) 78–93. Crossref DOI: https://doi.org/10.1007/s10915-010-9432-8
(48). L. Gutierrez, J. Tamagno, S. Elaskar, J. Appl. Fluid Mech. 9 (2016) 669–682. Crossref DOI: https://doi.org/10.18869/acadpub.jafm.68.225.24104
(49). S. Pope, Turbulent Flows, Cambridge University Press, 2000. Crossref DOI: https://doi.org/10.1017/CBO9780511840531
(50). N. Nordin, Complex chemistry modeling of diesel spray combustion, Ph.D. Thesis, Chalmers University of Technology, 2001.
(51). C.K. Law, Combustion Physics, Cambridge University Press, 2010.
(52). D.G, Goodwin, H.K. Moffat, R.L. Speth (2017), Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.3.0. Zenodo. Available at: URL
(53). U. Maas, Automatische reduktion von reaktionsmechanismen zur simulation reaktiver strömungen, Ph.D. Thesis, Institut für Technische Verbrennung, Universät Stuttgart, Germany, Stuttgart, 1993.
(54). F. Halter, C. Chauveau, N. Djebaïli-Chaumeix, I. Göklp, Proc. Combust. Inst. 30 (2005) 201‒208. Crossref DOI: https://doi.org/10.1016/j.proci.2004.08.195
(55). S. Fischer, D. Markus, A. Ghorbani, U. Maas, Zeitschrift für Physikalische Chemie 231 (2017) 1773–1796. Crossref DOI: https://doi.org/10.1515/zpch-2016-0904
(56). F. Minuzzi, C. Yu, U. Maas, Flow Turbul. Combust. 103 (2019) 963–984. Crossref DOI: https://doi.org/10.1007/s10494-019-00059-3
(57). D. C. Haworth, Progr. Energy Combust. Sci. 36 (2010) 168–259. Crossref DOI: https://doi.org/10.1016/j.pecs.2009.09.003
(58). S.B. Pope, Progr. Energy Combust. Sci. 11 (1985) 119–192. Crossref DOI: https://doi.org/10.1016/0360-1285(85)90002-4