Evaluation of the Possibility to Use Coalbed Methane to Produce Methanol Both by Direct Partial Oxidation and From Synthesis Gas

Authors

  • I.V. Sedov Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia
  • V.S. Arutyunov Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia; N.N. Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., Building 1, Moscow, Russia
  • M.V. Tsvetkov Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia
  • D.N. Podlesniy Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia
  • M.V. Salganskaya Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia
  • A.Y. Zaichenko Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia
  • Y.Y. Tsvetkova Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia
  • A.V. Nikitin Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia; N.N. Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., Building 1, Moscow, Russia
  • A.V. Ozerskii Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia; N.N. Semenov Federal Research Center for Chemical Physics RAS, 4 Kosygina Str., Building 1, Moscow, Russia
  • I.G. Fokin Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia
  • E.A. Salgansky Institute of Problems of Chemical Physics of RAS, 1 Academician Semenov ave., Chernogolovka, Russia

DOI:

https://doi.org/10.18321/ectj1328

Keywords:

Methane, Synthesis gas, Methanol, Partial oxidation, Thermodynamics

Abstract

The possibility of using coalbed methane to produce methanol is assessed. Methanol can be obtained from methane both by direct partial oxidation and from synthesis gas formed through the oxidative conversion of methane. Thermodynamic analysis of coalbed methane conversion was carried out to determine the conditions for obtaining synthesis gas with the ratio [H2]/[CO] = 2, which is optimal for methanol production. The system consisting of methane, nitrogen, and oxygen, with different contents of oxygen and water vapor, was considered. The fuel-air equivalence ratio varied in the range from 2 to 4. The optimal conditions for obtaining synthesis gas for the production of methanol is the use of a mixture with an equivalence ratio of at least 4. It has also been shown that the addition of water vapor leads to an increase in the [H2]/[CO] ratio. Direct gas-phase oxidation of methane to methanol opens up the possibility of complex use of coal mining waste, including not only coalbed methane but also a large amount of coal waste accumulated during coal mining and beneficiation.

References

(1). S.S. Zolotyh, From the project “Methane of Kuzbass” ‒ to Kuzbass methane, Bulletin of the Kuzbass State Technical University [Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta] 82 (6) (2010) 37‒39. (In Russ.).

(2). L.Ya. Kizilshtein, S.B. Bulgarevich, Solid Fuel Chem. 36 (2002) 76‒83.

(3). T.A. Moore, Int. J. Coal Geol. 101 (2012) 36‒81. Crossref

(4). A.I. Kopytov, M.D. Voytov, S.M. Tagiev, Modern methods of methane production from coal beds, Bulletin of the Kuzbass State Technical University [Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta] 114 (2) (2016) 35‒41. (in Russ.).

(5). S. Su, A. Beath, H. Guo, C. Mallet, Prog. Energy Combust. Sci. 31 (2005) 123‒170. Crossref

(6). A.M. Karasevich, B.M. Zimakov, N.M. Storonskiy, V.T. Khryukin, Prospects for the development and resource base of coal-bed methane in Russia, Gas Industry Journal [Gazovaja promyshlennost’] 8 (2004) 30–35. (In Russ.).

(7). E.A. Patskov, N.M. Storonskiy, V.T. Khryukin, A.A. Falin, M.G. Koryaga, Rational use of taken mine methane on mines of Kuznetsk, Ugol’ [Ugol’] 2 (2010) 22–26. (in Russ.).

(8). Z. Wang, S. Liu, Y. Qin, Fuel 303 (2021) 121277. Crossref

(9). T. Zheng, Y. Liang, B. Wang, H. Sun, J. Zheng, D. Li, Y. Chen, L. Shao, H. Zhang, J. Cleaner Prod. 229 (2019) 941‒955. Crossref

(10). E.V. Mazanik, E.M. Mogileva, K.S. Kolikov, Coal bed methane utilization: the state of the art, objectives and future considerations, Russian Mining Industry Journal [Gornaja promyshlennost’] 1 (113) (2014) 59‒65. (in Russ.).

(11). N.N. Krasyuk, K.V. Savkov, D.I. Zhmurovskiy, Extraction and industrial utilization of coal methane, Symposium Proceedings “Nedelya Gornyaka ‒ 97”, Moscow, February 03-07, 1997. P. 47‒55. (in Russ.).

(12). A.A. Shilov, A.M. Khramtsova, Utilization and use of coal mine methane for heat and electricity generation. Mining informational and analytical bulletin (scientific and technical journal) [Gornyj informacionno-analiticheskij bjulleten’] S4 (2008) 85‒89. (in Russ.).

(13). J.S. D’Amico, CBM utilization with economics, Coal Bed Methane (2nd Ed.) (2020) 413‒428. Crossref

(14). E.A. Patskov, Technology of production and use of coal mine methane, Gas Industry Journal [Gazovaja promyshlennost’] 645 (4) (2010) 63‒68. (in Russ.).

(15). A.A. Stepanov, L.L. Korobitsyna, A.V. Vosmerikov, Chem. Sustain. Dev. 28 (2020) 290‒295. Crossref

(16). L. Sun, Y. Tan, Q. Zhang, H. Xie, Y. Han, J. Fuel Chem. Technol. 40 (2012) 831‒837. Crossref

(17). W. Chen, X. Guo, E. Zou, M. Luo, M. Chen, M. Yang, H. Li, C. Jia, C. Deng, C. Sun, B. Liu, L. Yang, G. Chen, Green Energy Environ. 5 (2020) 347‒363. Crossref

(18). V.V. Chesnokov, A.S. Chichkan, Chem. Sustain. Dev. 30 (2022) 87‒93. Crossref

(19). A. Nikitin, A. Ozerskii, V. Savchenko, I. Sedov, V. Shmelev, V. Arutyunov, Chem. Eng. J. 337 (2019) 120883. Crossref

(20). E.A. Salgansky A.Y. Zaichenko, D.N. Podlesniy, M.V. Salganskaya, M.V. Tsvetkov, Fuel 210 (2017) 491‒496. Crossref

(21). G.B. Manelis, S.V. Glazov, E.A. Salgansky, D.B. Lempert, I.Yu. Gudkova, I.A. Domashnev A.M. Kolesnikova, V.M. Kislov, Yu.Yu. Kolesnikova, Int. J. Heat Mass Transfer. 92 (2016) 744‒750. Crossref

(22). V.M. Kislov, E.A. Salganskii, M.V. Tsvetkov, Yu.Yu. Tsvetkova, Russ. J. Appl. Chem. 90 (2017) 716‒720. Crossref

(23). A.N. Ocheredko A.Yu. Ryabov, S.V. Kudryashov, Chem. Sustain. Dev. 28 (2020) 270‒277. Crossref

(24). V. Arutyunov, A. Nikitin, L. Strekova, V. Savchenko, I. Sedov, Catal. Today 379 (2021) 23–27. Crossref

(25). L.N. Vosmerikova A.A. Vosmerikov, Ya.E. Barbashin, A.V. Vosmerikov, Chem. Sustain. Dev. 28 (2020) 226–235. Crossref

(26). E.V. Matus, S.D. Vasil`ev, I.Z. Ismagilov, V.A. Ushakov, M.A. Kerzhentsev, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 403–411. Crossref

(27). V.I. Savchenko, Y.S. Zimin, A.V. Nikitin, I.V. Sedov, V.S. Arutyunov, J. CO2 Util. 47 (2021) 101490. Crossref

(28). F. Nestler, M. Krüger, J. Full, M.J. Hadrich, R.J. White, A. Schaadt, Chem. Ing. Tech. 90 (2018) 1409‒1418. Crossref

(29). I.I. Lishchiner, O.V. Malova, V.M. Maslennikov, Yu.A. Vyskubenko, L.S. Tolchinskii, Yu.L. Dolinskii, A.L. Tarasov, Catal. Ind. 2 (2010) 368–373. Crossref

(30). B.G. Trusov, Proceedings of the 14th International Conference on Chemical Thermodynamics, St. Petersburg, 2002. P. 483. (in Russ.).

(31). V.V. Petrov, Y.N. Varzarev, A.P. Starnikova, Kh.A. Abdullin, Russ. J. Phys. Chem. B 14 (2020) 117‒121. Crossref

(32). F.F. Tabrizi, S. Mousavi, H. Atashi, Energy Convers. Manag. 103 (2015) 1065‒1077. Crossref

(33). A. Lutz, R.W. Bradshaw, J.O. Keller, D.E. Witmer, Int. J. Hydrog. Energy 28 (2002) 159‒167. Crossref

(34). A. Antzara, E. Heracleous, D.B. Bukur, A.A. Lemonidou, Energy Procedia 63 (2014) 6576‒6589. Crossref

(35). D. Saebea, S. Authayanun, Y. Patcharavorachot, A. Arpornwichanop, Energy Procedia 61 (2014) 2254‒2257. Crossref

(36). W.H. Chen, M.R. Lin, J.J. Lu, Yu. Chao, T.S. Leu, Int. J. Hydrog. Energy 35 (2010) 11787. Crossref

(37). A.M. Tereza, E.K. Anderzhanov, Russ. J. Phys. Chem. B 13 (2019) 626‒631. Crossref

(38). A.M. Tereza, S.P. Medvedev, V.N. Smirnov, Acta Astronaut. 176 (2020) 653‒661. Crossref

(39). K.A. Timofeev, A.V. Ozerskii, A.V. Nikitin, Ya.S. Zimin, Yu.A. Karozina, I.V. Sedov, V.S. Arutyunov, Synthesis of methanol on Cu/ Zn catalysts of low-temperature CO shift from synthesis gas obtained by matrix conversion of methane, Gorenie i Vzryv, 2022 (in Press) (in Russ.).

(40). V.I. Savchenko, A.V. Ozerskii, I.G. Fokin, A.V. Nikitin, V.S. Arutyunov, I.V. Sedov, Russ. J. Appl. Chem. 94 (2021) 509‒517. Crossref

Downloads

Published

2022-07-25

How to Cite

Sedov, I., Arutyunov, V., Tsvetkov, M., Podlesniy, D., Salganskaya, M., Zaichenko, A., … Salgansky, E. (2022). Evaluation of the Possibility to Use Coalbed Methane to Produce Methanol Both by Direct Partial Oxidation and From Synthesis Gas. Eurasian Chemico-Technological Journal, 24(2), 157–163. https://doi.org/10.18321/ectj1328

Issue

Section

Articles