Evaluation of the Possibility to Use Coalbed Methane to Produce Methanol Both by Direct Partial Oxidation and From Synthesis Gas
DOI:
https://doi.org/10.18321/ectj1328Keywords:
Methane, Synthesis gas, Methanol, Partial oxidation, ThermodynamicsAbstract
The possibility of using coalbed methane to produce methanol is assessed. Methanol can be obtained from methane both by direct partial oxidation and from synthesis gas formed through the oxidative conversion of methane. Thermodynamic analysis of coalbed methane conversion was carried out to determine the conditions for obtaining synthesis gas with the ratio [H2]/[CO] = 2, which is optimal for methanol production. The system consisting of methane, nitrogen, and oxygen, with different contents of oxygen and water vapor, was considered. The fuel-air equivalence ratio varied in the range from 2 to 4. The optimal conditions for obtaining synthesis gas for the production of methanol is the use of a mixture with an equivalence ratio of at least 4. It has also been shown that the addition of water vapor leads to an increase in the [H2]/[CO] ratio. Direct gas-phase oxidation of methane to methanol opens up the possibility of complex use of coal mining waste, including not only coalbed methane but also a large amount of coal waste accumulated during coal mining and beneficiation.
References
(1). S.S. Zolotyh, From the project “Methane of Kuzbass” ‒ to Kuzbass methane, Bulletin of the Kuzbass State Technical University [Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta] 82 (6) (2010) 37‒39. (In Russ.).
(2). L.Ya. Kizilshtein, S.B. Bulgarevich, Solid Fuel Chem. 36 (2002) 76‒83.
(3). T.A. Moore, Int. J. Coal Geol. 101 (2012) 36‒81. Crossref
(4). A.I. Kopytov, M.D. Voytov, S.M. Tagiev, Modern methods of methane production from coal beds, Bulletin of the Kuzbass State Technical University [Vestnik Kuzbasskogo gosudarstvennogo tehnicheskogo universiteta] 114 (2) (2016) 35‒41. (in Russ.).
(5). S. Su, A. Beath, H. Guo, C. Mallet, Prog. Energy Combust. Sci. 31 (2005) 123‒170. Crossref
(6). A.M. Karasevich, B.M. Zimakov, N.M. Storonskiy, V.T. Khryukin, Prospects for the development and resource base of coal-bed methane in Russia, Gas Industry Journal [Gazovaja promyshlennost’] 8 (2004) 30–35. (In Russ.).
(7). E.A. Patskov, N.M. Storonskiy, V.T. Khryukin, A.A. Falin, M.G. Koryaga, Rational use of taken mine methane on mines of Kuznetsk, Ugol’ [Ugol’] 2 (2010) 22–26. (in Russ.).
(8). Z. Wang, S. Liu, Y. Qin, Fuel 303 (2021) 121277. Crossref
(9). T. Zheng, Y. Liang, B. Wang, H. Sun, J. Zheng, D. Li, Y. Chen, L. Shao, H. Zhang, J. Cleaner Prod. 229 (2019) 941‒955. Crossref
(10). E.V. Mazanik, E.M. Mogileva, K.S. Kolikov, Coal bed methane utilization: the state of the art, objectives and future considerations, Russian Mining Industry Journal [Gornaja promyshlennost’] 1 (113) (2014) 59‒65. (in Russ.).
(11). N.N. Krasyuk, K.V. Savkov, D.I. Zhmurovskiy, Extraction and industrial utilization of coal methane, Symposium Proceedings “Nedelya Gornyaka ‒ 97”, Moscow, February 03-07, 1997. P. 47‒55. (in Russ.).
(12). A.A. Shilov, A.M. Khramtsova, Utilization and use of coal mine methane for heat and electricity generation. Mining informational and analytical bulletin (scientific and technical journal) [Gornyj informacionno-analiticheskij bjulleten’] S4 (2008) 85‒89. (in Russ.).
(13). J.S. D’Amico, CBM utilization with economics, Coal Bed Methane (2nd Ed.) (2020) 413‒428. Crossref
(14). E.A. Patskov, Technology of production and use of coal mine methane, Gas Industry Journal [Gazovaja promyshlennost’] 645 (4) (2010) 63‒68. (in Russ.).
(15). A.A. Stepanov, L.L. Korobitsyna, A.V. Vosmerikov, Chem. Sustain. Dev. 28 (2020) 290‒295. Crossref
(16). L. Sun, Y. Tan, Q. Zhang, H. Xie, Y. Han, J. Fuel Chem. Technol. 40 (2012) 831‒837. Crossref
(17). W. Chen, X. Guo, E. Zou, M. Luo, M. Chen, M. Yang, H. Li, C. Jia, C. Deng, C. Sun, B. Liu, L. Yang, G. Chen, Green Energy Environ. 5 (2020) 347‒363. Crossref
(18). V.V. Chesnokov, A.S. Chichkan, Chem. Sustain. Dev. 30 (2022) 87‒93. Crossref
(19). A. Nikitin, A. Ozerskii, V. Savchenko, I. Sedov, V. Shmelev, V. Arutyunov, Chem. Eng. J. 337 (2019) 120883. Crossref
(20). E.A. Salgansky A.Y. Zaichenko, D.N. Podlesniy, M.V. Salganskaya, M.V. Tsvetkov, Fuel 210 (2017) 491‒496. Crossref
(21). G.B. Manelis, S.V. Glazov, E.A. Salgansky, D.B. Lempert, I.Yu. Gudkova, I.A. Domashnev A.M. Kolesnikova, V.M. Kislov, Yu.Yu. Kolesnikova, Int. J. Heat Mass Transfer. 92 (2016) 744‒750. Crossref
(22). V.M. Kislov, E.A. Salganskii, M.V. Tsvetkov, Yu.Yu. Tsvetkova, Russ. J. Appl. Chem. 90 (2017) 716‒720. Crossref
(23). A.N. Ocheredko A.Yu. Ryabov, S.V. Kudryashov, Chem. Sustain. Dev. 28 (2020) 270‒277. Crossref
(24). V. Arutyunov, A. Nikitin, L. Strekova, V. Savchenko, I. Sedov, Catal. Today 379 (2021) 23–27. Crossref
(25). L.N. Vosmerikova A.A. Vosmerikov, Ya.E. Barbashin, A.V. Vosmerikov, Chem. Sustain. Dev. 28 (2020) 226–235. Crossref
(26). E.V. Matus, S.D. Vasil`ev, I.Z. Ismagilov, V.A. Ushakov, M.A. Kerzhentsev, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 403–411. Crossref
(27). V.I. Savchenko, Y.S. Zimin, A.V. Nikitin, I.V. Sedov, V.S. Arutyunov, J. CO2 Util. 47 (2021) 101490. Crossref
(28). F. Nestler, M. Krüger, J. Full, M.J. Hadrich, R.J. White, A. Schaadt, Chem. Ing. Tech. 90 (2018) 1409‒1418. Crossref
(29). I.I. Lishchiner, O.V. Malova, V.M. Maslennikov, Yu.A. Vyskubenko, L.S. Tolchinskii, Yu.L. Dolinskii, A.L. Tarasov, Catal. Ind. 2 (2010) 368–373. Crossref
(30). B.G. Trusov, Proceedings of the 14th International Conference on Chemical Thermodynamics, St. Petersburg, 2002. P. 483. (in Russ.).
(31). V.V. Petrov, Y.N. Varzarev, A.P. Starnikova, Kh.A. Abdullin, Russ. J. Phys. Chem. B 14 (2020) 117‒121. Crossref
(32). F.F. Tabrizi, S. Mousavi, H. Atashi, Energy Convers. Manag. 103 (2015) 1065‒1077. Crossref
(33). A. Lutz, R.W. Bradshaw, J.O. Keller, D.E. Witmer, Int. J. Hydrog. Energy 28 (2002) 159‒167. Crossref
(34). A. Antzara, E. Heracleous, D.B. Bukur, A.A. Lemonidou, Energy Procedia 63 (2014) 6576‒6589. Crossref
(35). D. Saebea, S. Authayanun, Y. Patcharavorachot, A. Arpornwichanop, Energy Procedia 61 (2014) 2254‒2257. Crossref
(36). W.H. Chen, M.R. Lin, J.J. Lu, Yu. Chao, T.S. Leu, Int. J. Hydrog. Energy 35 (2010) 11787. Crossref
(37). A.M. Tereza, E.K. Anderzhanov, Russ. J. Phys. Chem. B 13 (2019) 626‒631. Crossref
(38). A.M. Tereza, S.P. Medvedev, V.N. Smirnov, Acta Astronaut. 176 (2020) 653‒661. Crossref
(39). K.A. Timofeev, A.V. Ozerskii, A.V. Nikitin, Ya.S. Zimin, Yu.A. Karozina, I.V. Sedov, V.S. Arutyunov, Synthesis of methanol on Cu/ Zn catalysts of low-temperature CO shift from synthesis gas obtained by matrix conversion of methane, Gorenie i Vzryv, 2022 (in Press) (in Russ.).
(40). V.I. Savchenko, A.V. Ozerskii, I.G. Fokin, A.V. Nikitin, V.S. Arutyunov, I.V. Sedov, Russ. J. Appl. Chem. 94 (2021) 509‒517. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eurasian Chemico-Technological Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.