Thermodynamically Equilibrium Compositions of the Products Formed During the Filtration Combustion of the Metal-Containing Mixtures
DOI:
https://doi.org/10.18321/ectj998Keywords:
filtration combustion, rare metals, precious metals, thermodynamicsAbstract
Thermodynamic calculations for describing the compositions of the products formed in conditions of the filtration combustion of the metal-containing mixtures were carried out. The analysis of the equilibrium compositions of the products was carried out using the TERRA high-temperature thermochemical equilibrium calculation program. According to the results of calculations, the metals were divided into two groups. First one forms both the condensed and gaseous phases and in the second one ‒ metals that are only in the condensed phase. In case of the presence of metal compounds in the gas phase, as a rule, these are the following compounds: metals, oxides, hydroxides, hydrides, sulfides and metal sulfates. Metals of the second group cannot be subjected to mass transfer under conditions of the filtration combustion wave and will remain in solid combustion products (in ash).
References
(1). L. Muchova, E. Bakker, P. Rem, Water Air Soil Pollut. Focus 9 (2009) 107‒116. Crossref
(2). S.M. Jowitt, T.T. Werner, Z. Weng, G.M. Mudd, Curr. Opin. Green. Sustain. Chem. 13 (2018) 1‒7. Crossref
(3). S. Zhang, Y. Ding, B. Liu, C.C. Chang, Waste Manage. 65 (2017) 113‒127. Crossref
(4). A.H. Tkaczyk, A. Bartl, A. Amato, V. Lapkovskis, M. Petranikova, J. Phys. D: Appl. Phys. 51 (2018) 203001. Crossref
(5). M. Sethurajan, P.N. Lens, H.A. Horn, L.H.A. Figueiredo, E.D. van Hullebusch, Sustainable Heavy Metal Remediation 2 (2017) 161‒206. Crossref
(6). J.M. Klinger, Extr. Ind. Soc. 5 (2018) 1‒7. Crossref
(7). F. Anjum, M. Shahid, A. Akcil, Hydrometallurgy 117‒118 (2012) 1‒12. Crossref
(8). Y. Lu, Z. Xu, Resour. Conserv. Recy. 113 (2016) 28‒39. Crossref
(9). C. Brombacher, R. Bachofen, H. Brandl, Appl. Microbiol. Biotechnol. 48 (1997) 577‒587. Crossref
(10). G.B. Manelis, S.V. Glazov, E.A. Salgansky, D.B. Lempert, I.Yu. Gudkova, I.A. Domashnev, A.M. Kolesnikova, V.M. Kislov, Yu.Yu. Kolesnikova, Int. J. Heat Mass. Transfer 92 (2016) 744‒750. Crossref
(11). D. Tokmurzin, D. Adair, Eurasian Chem.-Technol. J. 21 (2019) 45‒49. Crossref
(12). G.B. Manelis, S.V. Glazov, D.B. Lempert, E.A. Salgansky, Russ. Chem. Bull. 60 (2011) 1301‒1317. Crossref
(13). E.A. Salgansky, V.M. Kislov, S.V. Glazov, M.V. Salganskaya, Journal of Combustion 2016, 9637082. Crossref
(14). I.G. Donskoy, V.A. Shamansky, A.N. Kozlov, D.A. Svishchev, Combust. Theor. Model. 21 (2017) 529‒559. Crossref
(15). M. Toledo, N. Ripoll, J. Cespedes, A. Zbogar- Rasic, N. Fedorova, V. Jovicic, A. Delgado, Energ Convers. Manage. 172 (2018) 381‒390. Crossref
(16). N.A. Lutsenko, V.A. Levin, Combust. Sci. Technol. 186 (2014) 1410‒1421. Crossref
(17). S.V. Glazov, V.M. Kislov, E.A. Salgansky, O.S. Rabinovich, A.I. Malinouski, M.V. Salganskaya, E.N. Pilipenko, Y.Y. Kolesnikova, Int. J. Heat Mass. Transfer 108 (2017) 1602‒1609. Crossref
(18). M. Seitzhanova, Z. Mansurov, M. Yeleuov, V. Roviello, R. Di Capua, Eurasian Chem.-Technol. J. 21 (2019) 149‒156. Crossref
(19). R.I. Egorov, A.S. Zaitsev, E.A. Salgansky, Energies 11 (2018) 3167‒3174. Crossref
(20). I. Kurmanbayeva, A. Mentbayeva, A. Sadykova, A. Adi, Z. Mansurov, Z. Bakenov, Eurasian Chem- Technol. J. 21 (2019) 75‒81. Crossref
(21). X.J. Liu, W.R. Zhang, T.J. Park, Combust. Theor. Model. 5 (2001) 595‒608. Crossref
(22). D. Lempert, S. Glazov, G. Manelis, Mass Transfer in Filtration Combustion Processes, 2011, pp. 483– 498. Crossref
(23). M. Diaz-Somoano, S. Unterberger, K.R.G. Hein, Fuel 85 (2006) 1087–1093. Crossref
(24). E. Furimsky, Fuel Process. Technol. 63 (2000) 29– 44. Crossref
(25). L. Zheng, E. Furimsky, Fuel Process. Technol. 81 (2003) 23–34. Crossref
(26). R.K. Wang, Z.H. Zhao, Q.Q. Yin, J.Z. Liu, Fuel 199 (2017) 578–586. Crossref
(27). J. Zhang, C.L. Han, Y.Q. Xu, Fuel Process. Technol. 84 (2003) 121–133. Crossref
(28). Y. Zhang, Y. Chen, A. Meng, Q. Li, H. Cheng, J. Hazard. Mater. 153 (2008) 309–319. Crossref
(29). S. Zhao, Y. Duan, J. Lu, S. Liu, D. Pudasainee, R. Gupta, M. Liu, J. Lu, Fuel 225 (2018) 490–498. Crossref
(30). B.G. Trusov, Proc. XIV Intern. Symp. Chemical Thermodynamics, St-Petersburg, 2002, p. 483–484.
(31). V.I. Berdnikov, Y.A. Gudim, Izvestiya. Ferrous Metallurgy 62 (2019) 705–712. Crossref
(32). N.I. Il’inykh, I.A. Malkova, Russ. Metall. 8 (2018) 750–757. Crossref
(33). S.Y. Kornilov, N.G. Rempe, N.N. Smirnyagina, Inorg. Mater. 9 (2018) 464‒471. Crossref
(34). S.L. Buyantuev, A.S. Kondratenko, S.A. Blagochinnov, Materials Science Forum 945 (2018) 1001‒1008.
(35). A.I. Sechin, O.S. Kyrmakova, T.A. Ivanova, IOP Conf. Ser.: Mater. Sci. Eng. 1 (2015) 012109. Crossref
(36). P.A. Timofeev, A.N. Timofeev, Russ. J. Non- Ferr. Met. 3 (2018) 336‒340. Crossref
(37). E.A. Salgansky, M.V. Tsvetkov, Kh.M. Kadiev, M.Ya. Visaliev, L.A. Zekel, Russ. J. Appl. Chem. 92 (2019) 1616−1633. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.