Thermodynamically Equilibrium Compositions of the Products Formed During the Filtration Combustion of the Metal-Containing Mixtures

Authors

  • E.A. Salgansky Institute of Problems of Chemical Physics RAS, 1 Academician Semenov Ave., Chernogolovka, Russia
  • D.N. Podlesniy Institute of Problems of Chemical Physics RAS, 1 Academician Semenov Ave., Chernogolovka, Russia
  • M.V. Tsvetkov Institute of Problems of Chemical Physics RAS, 1 Academician Semenov Ave., Chernogolovka, Russia
  • A.Yu. Zaichenko Institute of Problems of Chemical Physics RAS, 1 Academician Semenov Ave., Chernogolovka, Russia

DOI:

https://doi.org/10.18321/ectj998

Keywords:

filtration combustion, rare metals, precious metals, thermodynamics

Abstract

Thermodynamic calculations for describing the compositions of the products formed in conditions of the filtration combustion of the metal-containing mixtures were carried out. The analysis of the equilibrium compositions of the products was carried out using the TERRA high-temperature thermochemical equilibrium calculation program. According to the results of calculations, the metals were divided into two groups. First one forms both the condensed and gaseous phases and in the second one ‒ metals that are only in the condensed phase. In case of the presence of metal compounds in the gas phase, as a rule, these are the following compounds: metals, oxides, hydroxides, hydrides, sulfides and metal sulfates. Metals of the second group cannot be subjected to mass transfer under conditions of the filtration combustion wave and will remain in solid combustion products (in ash).

References

(1). L. Muchova, E. Bakker, P. Rem, Water Air Soil Pollut. Focus 9 (2009) 107‒116. Crossref

(2). S.M. Jowitt, T.T. Werner, Z. Weng, G.M. Mudd, Curr. Opin. Green. Sustain. Chem. 13 (2018) 1‒7. Crossref

(3). S. Zhang, Y. Ding, B. Liu, C.C. Chang, Waste Manage. 65 (2017) 113‒127. Crossref

(4). A.H. Tkaczyk, A. Bartl, A. Amato, V. Lapkovskis, M. Petranikova, J. Phys. D: Appl. Phys. 51 (2018) 203001. Crossref

(5). M. Sethurajan, P.N. Lens, H.A. Horn, L.H.A. Figueiredo, E.D. van Hullebusch, Sustainable Heavy Metal Remediation 2 (2017) 161‒206. Crossref

(6). J.M. Klinger, Extr. Ind. Soc. 5 (2018) 1‒7. Crossref

(7). F. Anjum, M. Shahid, A. Akcil, Hydrometallurgy 117‒118 (2012) 1‒12. Crossref

(8). Y. Lu, Z. Xu, Resour. Conserv. Recy. 113 (2016) 28‒39. Crossref

(9). C. Brombacher, R. Bachofen, H. Brandl, Appl. Microbiol. Biotechnol. 48 (1997) 577‒587. Crossref

(10). G.B. Manelis, S.V. Glazov, E.A. Salgansky, D.B. Lempert, I.Yu. Gudkova, I.A. Domashnev, A.M. Kolesnikova, V.M. Kislov, Yu.Yu. Kolesnikova, Int. J. Heat Mass. Transfer 92 (2016) 744‒750. Crossref

(11). D. Tokmurzin, D. Adair, Eurasian Chem.-Technol. J. 21 (2019) 45‒49. Crossref

(12). G.B. Manelis, S.V. Glazov, D.B. Lempert, E.A. Salgansky, Russ. Chem. Bull. 60 (2011) 1301‒1317. Crossref

(13). E.A. Salgansky, V.M. Kislov, S.V. Glazov, M.V. Salganskaya, Journal of Combustion 2016, 9637082. Crossref

(14). I.G. Donskoy, V.A. Shamansky, A.N. Kozlov, D.A. Svishchev, Combust. Theor. Model. 21 (2017) 529‒559. Crossref

(15). M. Toledo, N. Ripoll, J. Cespedes, A. Zbogar- Rasic, N. Fedorova, V. Jovicic, A. Delgado, Energ Convers. Manage. 172 (2018) 381‒390. Crossref

(16). N.A. Lutsenko, V.A. Levin, Combust. Sci. Technol. 186 (2014) 1410‒1421. Crossref

(17). S.V. Glazov, V.M. Kislov, E.A. Salgansky, O.S. Rabinovich, A.I. Malinouski, M.V. Salganskaya, E.N. Pilipenko, Y.Y. Kolesnikova, Int. J. Heat Mass. Transfer 108 (2017) 1602‒1609. Crossref

(18). M. Seitzhanova, Z. Mansurov, M. Yeleuov, V. Roviello, R. Di Capua, Eurasian Chem.-Technol. J. 21 (2019) 149‒156. Crossref

(19). R.I. Egorov, A.S. Zaitsev, E.A. Salgansky, Energies 11 (2018) 3167‒3174. Crossref

(20). I. Kurmanbayeva, A. Mentbayeva, A. Sadykova, A. Adi, Z. Mansurov, Z. Bakenov, Eurasian Chem- Technol. J. 21 (2019) 75‒81. Crossref

(21). X.J. Liu, W.R. Zhang, T.J. Park, Combust. Theor. Model. 5 (2001) 595‒608. Crossref

(22). D. Lempert, S. Glazov, G. Manelis, Mass Transfer in Filtration Combustion Processes, 2011, pp. 483– 498. Crossref

(23). M. Diaz-Somoano, S. Unterberger, K.R.G. Hein, Fuel 85 (2006) 1087–1093. Crossref

(24). E. Furimsky, Fuel Process. Technol. 63 (2000) 29– 44. Crossref

(25). L. Zheng, E. Furimsky, Fuel Process. Technol. 81 (2003) 23–34. Crossref

(26). R.K. Wang, Z.H. Zhao, Q.Q. Yin, J.Z. Liu, Fuel 199 (2017) 578–586. Crossref

(27). J. Zhang, C.L. Han, Y.Q. Xu, Fuel Process. Technol. 84 (2003) 121–133. Crossref

(28). Y. Zhang, Y. Chen, A. Meng, Q. Li, H. Cheng, J. Hazard. Mater. 153 (2008) 309–319. Crossref

(29). S. Zhao, Y. Duan, J. Lu, S. Liu, D. Pudasainee, R. Gupta, M. Liu, J. Lu, Fuel 225 (2018) 490–498. Crossref

(30). B.G. Trusov, Proc. XIV Intern. Symp. Chemical Thermodynamics, St-Petersburg, 2002, p. 483–484.

(31). V.I. Berdnikov, Y.A. Gudim, Izvestiya. Ferrous Metallurgy 62 (2019) 705–712. Crossref

(32). N.I. Il’inykh, I.A. Malkova, Russ. Metall. 8 (2018) 750–757. Crossref

(33). S.Y. Kornilov, N.G. Rempe, N.N. Smirnyagina, Inorg. Mater. 9 (2018) 464‒471. Crossref

(34). S.L. Buyantuev, A.S. Kondratenko, S.A. Blagochinnov, Materials Science Forum 945 (2018) 1001‒1008.

(35). A.I. Sechin, O.S. Kyrmakova, T.A. Ivanova, IOP Conf. Ser.: Mater. Sci. Eng. 1 (2015) 012109. Crossref

(36). P.A. Timofeev, A.N. Timofeev, Russ. J. Non- Ferr. Met. 3 (2018) 336‒340. Crossref

(37). E.A. Salgansky, M.V. Tsvetkov, Kh.M. Kadiev, M.Ya. Visaliev, L.A. Zekel, Russ. J. Appl. Chem. 92 (2019) 1616−1633. Crossref

Downloads

Published

2020-12-28

How to Cite

Salgansky, E., Podlesniy, D., Tsvetkov, M., & Zaichenko, A. (2020). Thermodynamically Equilibrium Compositions of the Products Formed During the Filtration Combustion of the Metal-Containing Mixtures. Eurasian Chemico-Technological Journal, 22(4), 263‒268. https://doi.org/10.18321/ectj998

Issue

Section

Articles

Most read articles by the same author(s)