Experimental Study of Influence of the Gas Flux on Urotropine Gasification in the Low-Temperature Gas Generator

Authors

  • E.A. Salgansky Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
  • A.Yu. Zaichenko Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
  • D.N. Podlesniy Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
  • M.V. Tsvetkov Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia

DOI:

https://doi.org/10.18321/ectj1561

Keywords:

hexamethylenetetramine, gasification, low-temperature gas generator, ramjet, high-speed flying vehicle

Abstract

The experimental study was carried out to investigate the gasification of urotropine (hexamethylenetetramine) in a low-temperature solid fuel gas generator under varying inlet gas flows. Nitrogen was applied as the filter gas. The filter gas flow was varied from 0.6 to 1.4 L/s with a step of 0.2 L/s. The inlet gas's initial temperature was equal to 910 K. It was shown that with an increase in the nitrogen flow, the fuel gasification time decreased. Increasing the flux of inlet nitrogen from 0.6 to 1.4 L/s results in an increase in the average urotropine gasification mass rate from 0.63 to 1.61 g/s. When the initial nitrogen flow is raised, the rate of fuel gasification increases almost linearly. Studies have demonstrated that the proportion of mass flows between urotropine gasification products and nitrogen remains constant regardless of the incoming gas flow. The mass flow ratio remains steady at approximately 0.9 g/g when the incoming gas flow is altered. It has been shown that the gaseous products of urotropine gasification consist of nitrogen with a small amount of hydrogen and hydrocarbons. The content of simple gaseous products does not exceed 4% vol.

References

(1). N.N. Smirnov, Acta Astronaut. 204 (2023) 679‒681. Crossref

(2). I. Remissa, H. Jabri, Y. Hairch, et al., Eurasian Chem.-Technol. J. 25 (2023) 3–19. Crossref

(3). M.V. Salganskaya, A.Yu. Zaichenko, D.N. Podlesniy, et al., Acta Astronaut. 204 (2023) 682–685. Crossref

(4). A.I. Karpov, A.Y. Leschev, A.M. Lipanov, G.A. Leschev, J. Loss. Prev. Process Ind. 26 (2013) 338– 343. Crossref

(5). R. Srinivasan, B.N. Raghunandan, Exp. Therm Fluid Sci. 44 (2012) 323–333. Crossref

(6). S. Krishnan, K.K. Rajesh, Int. J. Energetic Mater. Chem. Propul. 5 (2002) 316–329. Crossref

(7). S. Yang, G.Q. He, Y. Liu, J. Li, Applied Mechanical and Materials 152–154 (2012) 204–209. Crossref

(8). A. Kim, Z. Liu, G. Crampton, Explosion suppression of an armoured vehicle crew compartment. Progress in Safety Science and Technology: Proc. 2004 International Symposium on Safety Science and Technology, Vol. 4, 1070–1074.

(9). V.N. Avrashkov, E.S. Metelkina, D.V. Meshcheryakov, Combust. Explos. Shock Waves 46 (2010) 400–407. Crossref

(10). Yu.V. Tunik, G.Ya. Gerasimov, V.Yu. Levashov, V.O. Mayorov, Acta Astronaut. 198 (2022) 495–501. Crossref

(11). E.A. Salgansky, N.A. Lutsenko, Aerosp. Sci. Technol. 109 (2021) 106420. Crossref

(12). D.O. Glushkov, G.V. Kuznetsov, A.G. Nigay, V.A. Yanovsky, Acta Astronaut. 177 (2020) 66–79. Crossref

(13). Е.V. Matus, S.A. Yashnik, A.V. Salnikov, L.M. Khitsova, et al., Eurasian Chem.-Technol. J. 23 (2021) 267‒275. Crossref

(14). X. Li, J. Cao, J. Du, Aerosp. Sci. Technol. 127 (2022) 107737. Crossref

(15). S. Barbarossa, M. Murgia, R. Orrù, G. Cao, Eurasian Chem.-Technol. J. 23 (2021) 213–220. Crossref

(16). D.B. Lempert, A.I. Kazakov, E.M. Dorofeenko, et al., Russ. J. Phys. Chem. B 14 (2020) 579–586. Crossref

(17). A.G. Korotkikh, I.V. Sorokin, E.A. Selikhova, et al., Russ. J. Phys. Chem. B 14 (2020) 592–600. Crossref

(18). S. Luo, Y. Feng, J. Song, D. Xu, K. Xia, Aerosp. Sci. Technol. 128 (2022) 107798. Crossref

(19). D.A. Vnuchkov, V.I. Zvegintsev, D.G. Nalivaichenko, et al., Thermophys. Aeromech. 25 (2018) 605–611. Crossref

(20). G.A. Tarasov, A.A. Molokanov, N.A. Plishkin, et al., J. Phys.: Conf. Ser. 1891 (2021) 012056. Crossref

(21). N.K. Gopinath, K.V. Govindarajan, D.R. Mahapatra, Int. J. Heat Mass Transf. 194 (2022) 123060. Crossref

(22). C. Qiu, W. Zhou, L. Long, et al., Appl. Therm. Eng. 197 (2021) 117333. Crossref

(23). V.Yu. Aleksandrov, M.V. Ananyan, K.Yu. Arefyev, et al., Investigation of the process sublimation for solid hydrocarbons in permanent section channels, 31st Congress of the International Council of the Aeronautical Sciences, (2018) 143115.

(24). A.N. Shiplyuk, V.I. Zvegintsev, S.M. Frolov, et al., J. Propuls. Power 37 (2021) 20. Crossref

(25). Z.A. Mansurov, Eurasian Chem.-Technol. J. 23 (2021) 235–245. Crossref

(26). G. Rao, W. Feng, J. Zhang, et al., J. Therm. Anal. Calorim. 135 (2019) 2447–2456. Crossref

(27). E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves 39 (2003) 37–42. Crossref

(28). E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Fuel 210 (2017) 491–496. Crossref

(29). E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves 42 (2006) 55–62. Crossref

(30). I.I. Amelin, E.A. Salgansky, N.N. Volkova, et al., Russ. Chem. Bull. 60 (2011) 1150–1157. Crossref

(31). E.A. Salgansky, N.A. Lutsenko, Russ. J. Phys. Chem. B 16 (2022) 278–282. Crossref

(32). E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Thermophys. Aeromech. 30 (2023) 339–345. Crossref

(33). M. Nomoto, T. Komoto, T. Yamanobe, Bunseki Kagaku 59 (2010) 1013–1020. (in Japan). Crossref

(34). M. Leidl, C. Schwarzinger, J. Anal. Appl. Pyrol. 74 (2005) 200–203. Crossref

Downloads

Published

2024-04-20

How to Cite

Salgansky, E., Zaichenko, A., Podlesniy, D., & Tsvetkov , M. (2024). Experimental Study of Influence of the Gas Flux on Urotropine Gasification in the Low-Temperature Gas Generator . Eurasian Chemico-Technological Journal, 26(1), 15–20. https://doi.org/10.18321/ectj1561

Issue

Section

Articles

Most read articles by the same author(s)