Experimental Study of Influence of the Gas Flux on Urotropine Gasification in the Low-Temperature Gas Generator

Authors

  • E.A. Salgansky Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
  • A.Yu. Zaichenko Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
  • D.N. Podlesniy Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
  • M.V. Tsvetkov Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia

DOI:

https://doi.org/10.18321/ectj1561

Keywords:

hexamethylenetetramine, gasification, low-temperature gas generator, ramjet, high-speed flying vehicle

Abstract

The experimental study was carried out to investigate the gasification of urotropine (hexamethylenetetramine) in a low-temperature solid fuel gas generator under varying inlet gas flows. Nitrogen was applied as the filter gas. The filter gas flow was varied from 0.6 to 1.4 L/s with a step of 0.2 L/s. The inlet gas's initial temperature was equal to 910 K. It was shown that with an increase in the nitrogen flow, the fuel gasification time decreased. Increasing the flux of inlet nitrogen from 0.6 to 1.4 L/s results in an increase in the average urotropine gasification mass rate from 0.63 to 1.61 g/s. When the initial nitrogen flow is raised, the rate of fuel gasification increases almost linearly. Studies have demonstrated that the proportion of mass flows between urotropine gasification products and nitrogen remains constant regardless of the incoming gas flow. The mass flow ratio remains steady at approximately 0.9 g/g when the incoming gas flow is altered. It has been shown that the gaseous products of urotropine gasification consist of nitrogen with a small amount of hydrogen and hydrocarbons. The content of simple gaseous products does not exceed 4% vol.

References

(1). N.N. Smirnov, Acta Astronaut. 204 (2023) 679‒681. Crossref DOI: https://doi.org/10.1016/j.actaastro.2022.10.028

(2). I. Remissa, H. Jabri, Y. Hairch, et al., Eurasian Chem.-Technol. J. 25 (2023) 3–19. Crossref DOI: https://doi.org/10.18321/ectj1491

(3). M.V. Salganskaya, A.Yu. Zaichenko, D.N. Podlesniy, et al., Acta Astronaut. 204 (2023) 682–685. Crossref DOI: https://doi.org/10.1016/j.actaastro.2022.08.039

(4). A.I. Karpov, A.Y. Leschev, A.M. Lipanov, G.A. Leschev, J. Loss. Prev. Process Ind. 26 (2013) 338– 343. Crossref DOI: https://doi.org/10.1016/j.jlp.2011.10.007

(5). R. Srinivasan, B.N. Raghunandan, Exp. Therm Fluid Sci. 44 (2012) 323–333. Crossref DOI: https://doi.org/10.1016/j.expthermflusci.2012.07.004

(6). S. Krishnan, K.K. Rajesh, Int. J. Energetic Mater. Chem. Propul. 5 (2002) 316–329. Crossref DOI: https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.340

(7). S. Yang, G.Q. He, Y. Liu, J. Li, Applied Mechanical and Materials 152–154 (2012) 204–209. Crossref DOI: https://doi.org/10.4028/www.scientific.net/AMM.152-154.204

(8). A. Kim, Z. Liu, G. Crampton, Explosion suppression of an armoured vehicle crew compartment. Progress in Safety Science and Technology: Proc. 2004 International Symposium on Safety Science and Technology, Vol. 4, 1070–1074.

(9). V.N. Avrashkov, E.S. Metelkina, D.V. Meshcheryakov, Combust. Explos. Shock Waves 46 (2010) 400–407. Crossref DOI: https://doi.org/10.1007/s10573-010-0054-0

(10). Yu.V. Tunik, G.Ya. Gerasimov, V.Yu. Levashov, V.O. Mayorov, Acta Astronaut. 198 (2022) 495–501. Crossref DOI: https://doi.org/10.1016/j.actaastro.2022.06.027

(11). E.A. Salgansky, N.A. Lutsenko, Aerosp. Sci. Technol. 109 (2021) 106420. Crossref DOI: https://doi.org/10.1016/j.ast.2020.106420

(12). D.O. Glushkov, G.V. Kuznetsov, A.G. Nigay, V.A. Yanovsky, Acta Astronaut. 177 (2020) 66–79. Crossref DOI: https://doi.org/10.1016/j.actaastro.2020.07.018

(13). Е.V. Matus, S.A. Yashnik, A.V. Salnikov, L.M. Khitsova, et al., Eurasian Chem.-Technol. J. 23 (2021) 267‒275. Crossref DOI: https://doi.org/10.18321/ectj1130

(14). X. Li, J. Cao, J. Du, Aerosp. Sci. Technol. 127 (2022) 107737. Crossref DOI: https://doi.org/10.1016/j.ast.2022.107737

(15). S. Barbarossa, M. Murgia, R. Orrù, G. Cao, Eurasian Chem.-Technol. J. 23 (2021) 213–220. Crossref DOI: https://doi.org/10.18321/ectj1104

(16). D.B. Lempert, A.I. Kazakov, E.M. Dorofeenko, et al., Russ. J. Phys. Chem. B 14 (2020) 579–586. Crossref DOI: https://doi.org/10.1134/S1990793120040090

(17). A.G. Korotkikh, I.V. Sorokin, E.A. Selikhova, et al., Russ. J. Phys. Chem. B 14 (2020) 592–600. Crossref DOI: https://doi.org/10.1134/S1990793120040089

(18). S. Luo, Y. Feng, J. Song, D. Xu, K. Xia, Aerosp. Sci. Technol. 128 (2022) 107798. Crossref DOI: https://doi.org/10.1016/j.ast.2022.107798

(19). D.A. Vnuchkov, V.I. Zvegintsev, D.G. Nalivaichenko, et al., Thermophys. Aeromech. 25 (2018) 605–611. Crossref DOI: https://doi.org/10.1134/S0869864318040121

(20). G.A. Tarasov, A.A. Molokanov, N.A. Plishkin, et al., J. Phys.: Conf. Ser. 1891 (2021) 012056. Crossref DOI: https://doi.org/10.1088/1742-6596/1891/1/012056

(21). N.K. Gopinath, K.V. Govindarajan, D.R. Mahapatra, Int. J. Heat Mass Transf. 194 (2022) 123060. Crossref DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.123060

(22). C. Qiu, W. Zhou, L. Long, et al., Appl. Therm. Eng. 197 (2021) 117333. Crossref DOI: https://doi.org/10.1016/j.applthermaleng.2021.117333

(23). V.Yu. Aleksandrov, M.V. Ananyan, K.Yu. Arefyev, et al., Investigation of the process sublimation for solid hydrocarbons in permanent section channels, 31st Congress of the International Council of the Aeronautical Sciences, (2018) 143115.

(24). A.N. Shiplyuk, V.I. Zvegintsev, S.M. Frolov, et al., J. Propuls. Power 37 (2021) 20. Crossref DOI: https://doi.org/10.2514/1.B37780

(25). Z.A. Mansurov, Eurasian Chem.-Technol. J. 23 (2021) 235–245. Crossref DOI: https://doi.org/10.18321/ectj1127

(26). G. Rao, W. Feng, J. Zhang, et al., J. Therm. Anal. Calorim. 135 (2019) 2447–2456. Crossref DOI: https://doi.org/10.1007/s10973-018-7359-8

(27). E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves 39 (2003) 37–42. Crossref DOI: https://doi.org/10.1023/A:1022193117840

(28). E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Fuel 210 (2017) 491–496. Crossref DOI: https://doi.org/10.1016/j.fuel.2017.08.103

(29). E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves 42 (2006) 55–62. Crossref DOI: https://doi.org/10.1007/s10573-006-0007-9

(30). I.I. Amelin, E.A. Salgansky, N.N. Volkova, et al., Russ. Chem. Bull. 60 (2011) 1150–1157. Crossref DOI: https://doi.org/10.1007/s11172-011-0180-1

(31). E.A. Salgansky, N.A. Lutsenko, Russ. J. Phys. Chem. B 16 (2022) 278–282. Crossref DOI: https://doi.org/10.1134/S1990793122020117

(32). E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Thermophys. Aeromech. 30 (2023) 339–345. Crossref DOI: https://doi.org/10.1134/S0869864323020142

(33). M. Nomoto, T. Komoto, T. Yamanobe, Bunseki Kagaku 59 (2010) 1013–1020. (in Japan). Crossref DOI: https://doi.org/10.2116/bunsekikagaku.59.1013

(34). M. Leidl, C. Schwarzinger, J. Anal. Appl. Pyrol. 74 (2005) 200–203. Crossref DOI: https://doi.org/10.1016/j.jaap.2004.11.001

Downloads

Published

20-04-2024

How to Cite

Salgansky, E., Zaichenko, A., Podlesniy, D., & Tsvetkov , M. (2024). Experimental Study of Influence of the Gas Flux on Urotropine Gasification in the Low-Temperature Gas Generator . Eurasian Chemico-Technological Journal, 26(1), 15–20. https://doi.org/10.18321/ectj1561

Issue

Section

Articles

Most read articles by the same author(s)