Experimental Study of Influence of the Gas Flux on Urotropine Gasification in the Low-Temperature Gas Generator
DOI:
https://doi.org/10.18321/ectj1561Keywords:
hexamethylenetetramine, gasification, low-temperature gas generator, ramjet, high-speed flying vehicleAbstract
The experimental study was carried out to investigate the gasification of urotropine (hexamethylenetetramine) in a low-temperature solid fuel gas generator under varying inlet gas flows. Nitrogen was applied as the filter gas. The filter gas flow was varied from 0.6 to 1.4 L/s with a step of 0.2 L/s. The inlet gas's initial temperature was equal to 910 K. It was shown that with an increase in the nitrogen flow, the fuel gasification time decreased. Increasing the flux of inlet nitrogen from 0.6 to 1.4 L/s results in an increase in the average urotropine gasification mass rate from 0.63 to 1.61 g/s. When the initial nitrogen flow is raised, the rate of fuel gasification increases almost linearly. Studies have demonstrated that the proportion of mass flows between urotropine gasification products and nitrogen remains constant regardless of the incoming gas flow. The mass flow ratio remains steady at approximately 0.9 g/g when the incoming gas flow is altered. It has been shown that the gaseous products of urotropine gasification consist of nitrogen with a small amount of hydrogen and hydrocarbons. The content of simple gaseous products does not exceed 4% vol.
References
(1). N.N. Smirnov, Acta Astronaut. 204 (2023) 679‒681. Crossref
(2). I. Remissa, H. Jabri, Y. Hairch, et al., Eurasian Chem.-Technol. J. 25 (2023) 3–19. Crossref
(3). M.V. Salganskaya, A.Yu. Zaichenko, D.N. Podlesniy, et al., Acta Astronaut. 204 (2023) 682–685. Crossref
(4). A.I. Karpov, A.Y. Leschev, A.M. Lipanov, G.A. Leschev, J. Loss. Prev. Process Ind. 26 (2013) 338– 343. Crossref
(5). R. Srinivasan, B.N. Raghunandan, Exp. Therm Fluid Sci. 44 (2012) 323–333. Crossref
(6). S. Krishnan, K.K. Rajesh, Int. J. Energetic Mater. Chem. Propul. 5 (2002) 316–329. Crossref
(7). S. Yang, G.Q. He, Y. Liu, J. Li, Applied Mechanical and Materials 152–154 (2012) 204–209. Crossref
(8). A. Kim, Z. Liu, G. Crampton, Explosion suppression of an armoured vehicle crew compartment. Progress in Safety Science and Technology: Proc. 2004 International Symposium on Safety Science and Technology, Vol. 4, 1070–1074.
(9). V.N. Avrashkov, E.S. Metelkina, D.V. Meshcheryakov, Combust. Explos. Shock Waves 46 (2010) 400–407. Crossref
(10). Yu.V. Tunik, G.Ya. Gerasimov, V.Yu. Levashov, V.O. Mayorov, Acta Astronaut. 198 (2022) 495–501. Crossref
(11). E.A. Salgansky, N.A. Lutsenko, Aerosp. Sci. Technol. 109 (2021) 106420. Crossref
(12). D.O. Glushkov, G.V. Kuznetsov, A.G. Nigay, V.A. Yanovsky, Acta Astronaut. 177 (2020) 66–79. Crossref
(13). Е.V. Matus, S.A. Yashnik, A.V. Salnikov, L.M. Khitsova, et al., Eurasian Chem.-Technol. J. 23 (2021) 267‒275. Crossref
(14). X. Li, J. Cao, J. Du, Aerosp. Sci. Technol. 127 (2022) 107737. Crossref
(15). S. Barbarossa, M. Murgia, R. Orrù, G. Cao, Eurasian Chem.-Technol. J. 23 (2021) 213–220. Crossref
(16). D.B. Lempert, A.I. Kazakov, E.M. Dorofeenko, et al., Russ. J. Phys. Chem. B 14 (2020) 579–586. Crossref
(17). A.G. Korotkikh, I.V. Sorokin, E.A. Selikhova, et al., Russ. J. Phys. Chem. B 14 (2020) 592–600. Crossref
(18). S. Luo, Y. Feng, J. Song, D. Xu, K. Xia, Aerosp. Sci. Technol. 128 (2022) 107798. Crossref
(19). D.A. Vnuchkov, V.I. Zvegintsev, D.G. Nalivaichenko, et al., Thermophys. Aeromech. 25 (2018) 605–611. Crossref
(20). G.A. Tarasov, A.A. Molokanov, N.A. Plishkin, et al., J. Phys.: Conf. Ser. 1891 (2021) 012056. Crossref
(21). N.K. Gopinath, K.V. Govindarajan, D.R. Mahapatra, Int. J. Heat Mass Transf. 194 (2022) 123060. Crossref
(22). C. Qiu, W. Zhou, L. Long, et al., Appl. Therm. Eng. 197 (2021) 117333. Crossref
(23). V.Yu. Aleksandrov, M.V. Ananyan, K.Yu. Arefyev, et al., Investigation of the process sublimation for solid hydrocarbons in permanent section channels, 31st Congress of the International Council of the Aeronautical Sciences, (2018) 143115.
(24). A.N. Shiplyuk, V.I. Zvegintsev, S.M. Frolov, et al., J. Propuls. Power 37 (2021) 20. Crossref
(25). Z.A. Mansurov, Eurasian Chem.-Technol. J. 23 (2021) 235–245. Crossref
(26). G. Rao, W. Feng, J. Zhang, et al., J. Therm. Anal. Calorim. 135 (2019) 2447–2456. Crossref
(27). E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves 39 (2003) 37–42. Crossref
(28). E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Fuel 210 (2017) 491–496. Crossref
(29). E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves 42 (2006) 55–62. Crossref
(30). I.I. Amelin, E.A. Salgansky, N.N. Volkova, et al., Russ. Chem. Bull. 60 (2011) 1150–1157. Crossref
(31). E.A. Salgansky, N.A. Lutsenko, Russ. J. Phys. Chem. B 16 (2022) 278–282. Crossref
(32). E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Thermophys. Aeromech. 30 (2023) 339–345. Crossref
(33). M. Nomoto, T. Komoto, T. Yamanobe, Bunseki Kagaku 59 (2010) 1013–1020. (in Japan). Crossref
(34). M. Leidl, C. Schwarzinger, J. Anal. Appl. Pyrol. 74 (2005) 200–203. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.