Pyrolysis of High Volatile C Bituminous Coal under the Action of Nanosecond Laser Radiation

Authors

  • Ya.V. Kraft Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Sovetskiy pr., Kemerovo, Russia
  • A.B. Aduev Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Sovetskiy pr., Kemerovo,
  • N.V. Nelyubina Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Sovetskiy pr., Kemerovo, Russia
  • V.D. Volkov Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Sovetskiy pr., Kemerovo, Russia
  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry SB RAS, 18 Sovetskiy pr., Kemerovo, Russia; Federal Research Center G.K. Boreskov Institute of Catalysis, 5 Ac. Lavrentieva ave., Novosibirsk, Russia

DOI:

https://doi.org/10.18321/ectj1430

Keywords:

Coal, Gaseous products, Laser, Pyrolysis, Mass spectrometry

Abstract

 The effect of pulsed nanosecond laser radiation (wavelength 532 nm, pulse duration 14 ns, pulse repetition frequency 6 Hz, the density of laser radiation power 0.2–0.6 J/cm2) on the tableted samples of high volatile C bituminous coal in argon medium is investigated. Among the gaseous products of pyrolysis, H2, CH4, C2H2, CO and CO2 are detected. The volume fractions of gaseous products from sample pyrolysis depending on the laser radiation power density is established. Within the laser radiation power density range 0.2–0.4 J/cm2, the volume of the formed combustible gases per unit mass of the reacted sample increases, and remains almost unchanged with further increase in power density. The volume fraction of combustible gases in the mixture of gaseous pyrolysis products are only slightly dependent on the laser radiation power density. The action of nanosecond laser radiation with a power density of more than 0.4 J/cm2 causes intense ablation of the tableted sample containing 0.005 wt.%. polyvinyl alcohol. A tableted sample containing no binding material is destroyed under the action of nanosecond laser radiation with a power density of more than 0.2 J/cm2.

References

(1). S. Chu, A. Majumdar, Nature 488 (2012) 294–303. Crossref

(2). A.E. Kontorovich, M.I. Epov, L.V. Eder, Russ. Geol. Geophysics 55 (2014) 534–543. Crossref

(3). H.Q. Hu, Q. Zhou, S.W. Zhu, B. Meyer, S. Krzack, G.H. Chen, Fuel Processing Technol. 85 (2004) 849–861. Crossref

(4). Y.P. Zhao, H. Hu, L.J. Jin, B. Wu, S.W. Zhu, Energy Fuels 23 (2009) 870–875. Crossref

(5). K. Matsuoka, H. Akiho, W.C. Xu, R. Gupta, T.F. Wall, A. Tomita, Fuel 84 (2005) 63–69. Crossref

(6). C.Z. Li, Fuel 86 (2007) 1664–1683. Crossref

(7). F. Mushtaq, R. Mat, F.N. Ani, Renew. Sust. Energy Rev. 39 (2014) 555–274. Crossref

(8). S.C. Saxena, Prog. Energy Combust. Sci. 16 (1990) 55–94. Crossref

(9). H.-Y. Cai, A.J. Guell, I.N.Chatzakis, J.-Y. Lim, D.R. Dugwell, R. Kandiyoti, Fuel 75 (1996) 15–24. Crossref

(10). R.L. Hanson, N.E. Vanderborgh, D.G. Brookins, Anal. Chem. 49 (1977) 390–395. Crossref

(11). A.T. Pyatenko, S.V. Bukhman, V.S. Lebedinskii, V.M. Nasarov, I.Ya. Tolmachev, Fuel 71 (1992) 701–704. Crossref

(12). W. Maswadeh, N.S. Arnold, W.H. Mcclennen, A. Tripathi, J. DuBow, H.L.C. Meuzelaar, Energy Fuels 7 (1993) 1006–1012. Crossref

(13). R. Gadiou, Y. Bouzidi, G. Prado, Fuel 81 (2002) 2121–2130. Crossref

(14). Y. Li, F. Hua, H. An, Y. Cheng, Fuel 283 (2021) 119290. Crossref

(15). F.S. Karn, R.A. Friedel, A.S. Sharkey, Fuel 51 (1972) 113–115. Crossref

(16). N.E. Vanderborgh, W.J. Verzino, M.A. Fletcher, B.A. Nichols, J. Anal. Appl. Pyrol. 4 (1982) 21–31. Crossref

(17). B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov, Opt. Spectrosc. 128 (2020) 2008–2014. Crossref

(18). B.P. Aduev, Y.V. Kraft, D.R. Nurmukhametov, Z.R. Ismagilov, Chem. Sustain. Dev. 27 (2019) 549–555. Crossref

(19). B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov, Opt. Spectrosc. 128 (2020) 429–435. Crossref

(20). B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 518–526. Crossref

(21). Y.V. Kraft, D.R. Nurmukhametov, B.P. Aduev, Z.R. Ismagilov, Bulletin of the Kuzbass State Technical University (2019) 5–16. (in Russian) Crossref

(22). C.K. Westbrook, F.L. Dryer, Symp. (Int.) Combust. 18 (1981) 749–767. Crossref

(23). X. Huang, D. Cheng, F. Chen, X. Zhan, J. Energy Chem. 25 (2015) 65–71. Crossref

(24). R.F. Baddour, J.M. Iwasyk, Ind. Eng. Chem. Process Des. Dev. 1 (1962) 169–176. Crossref

(25). M.E. Dry, Catal. Today 71 (2002) 227–241. Crossref

(26). Y. Matsumura, T. Nakamori, Appl. Catal. A-Gen. 258 (2004) 107–114. Crossref

(27). J.U. Jung, W. Nam, K.J. Yoon, G.Y. Han, Korean J. Chem. Eng. 24 (2007) 674–678. Crossref

Downloads

Published

2022-10-10

How to Cite

Kraft, Y., Aduev, A., Nelyubina, N., Volkov, V., & Ismagilov, Z. (2022). Pyrolysis of High Volatile C Bituminous Coal under the Action of Nanosecond Laser Radiation. Eurasian Chemico-Technological Journal, 24(3), 173–181. https://doi.org/10.18321/ectj1430

Issue

Section

Articles