Pyrolysis of High Volatile C Bituminous Coal under the Action of Nanosecond Laser Radiation
DOI:
https://doi.org/10.18321/ectj1430Keywords:
Coal, Gaseous products, Laser, Pyrolysis, Mass spectrometryAbstract
The effect of pulsed nanosecond laser radiation (wavelength 532 nm, pulse duration 14 ns, pulse repetition frequency 6 Hz, the density of laser radiation power 0.2–0.6 J/cm2) on the tableted samples of high volatile C bituminous coal in argon medium is investigated. Among the gaseous products of pyrolysis, H2, CH4, C2H2, CO and CO2 are detected. The volume fractions of gaseous products from sample pyrolysis depending on the laser radiation power density is established. Within the laser radiation power density range 0.2–0.4 J/cm2, the volume of the formed combustible gases per unit mass of the reacted sample increases, and remains almost unchanged with further increase in power density. The volume fraction of combustible gases in the mixture of gaseous pyrolysis products are only slightly dependent on the laser radiation power density. The action of nanosecond laser radiation with a power density of more than 0.4 J/cm2 causes intense ablation of the tableted sample containing 0.005 wt.%. polyvinyl alcohol. A tableted sample containing no binding material is destroyed under the action of nanosecond laser radiation with a power density of more than 0.2 J/cm2.
References
(1). S. Chu, A. Majumdar, Nature 488 (2012) 294–303. Crossref
(2). A.E. Kontorovich, M.I. Epov, L.V. Eder, Russ. Geol. Geophysics 55 (2014) 534–543. Crossref
(3). H.Q. Hu, Q. Zhou, S.W. Zhu, B. Meyer, S. Krzack, G.H. Chen, Fuel Processing Technol. 85 (2004) 849–861. Crossref
(4). Y.P. Zhao, H. Hu, L.J. Jin, B. Wu, S.W. Zhu, Energy Fuels 23 (2009) 870–875. Crossref
(5). K. Matsuoka, H. Akiho, W.C. Xu, R. Gupta, T.F. Wall, A. Tomita, Fuel 84 (2005) 63–69. Crossref
(6). C.Z. Li, Fuel 86 (2007) 1664–1683. Crossref
(7). F. Mushtaq, R. Mat, F.N. Ani, Renew. Sust. Energy Rev. 39 (2014) 555–274. Crossref
(8). S.C. Saxena, Prog. Energy Combust. Sci. 16 (1990) 55–94. Crossref
(9). H.-Y. Cai, A.J. Guell, I.N.Chatzakis, J.-Y. Lim, D.R. Dugwell, R. Kandiyoti, Fuel 75 (1996) 15–24. Crossref
(10). R.L. Hanson, N.E. Vanderborgh, D.G. Brookins, Anal. Chem. 49 (1977) 390–395. Crossref
(11). A.T. Pyatenko, S.V. Bukhman, V.S. Lebedinskii, V.M. Nasarov, I.Ya. Tolmachev, Fuel 71 (1992) 701–704. Crossref
(12). W. Maswadeh, N.S. Arnold, W.H. Mcclennen, A. Tripathi, J. DuBow, H.L.C. Meuzelaar, Energy Fuels 7 (1993) 1006–1012. Crossref
(13). R. Gadiou, Y. Bouzidi, G. Prado, Fuel 81 (2002) 2121–2130. Crossref
(14). Y. Li, F. Hua, H. An, Y. Cheng, Fuel 283 (2021) 119290. Crossref
(15). F.S. Karn, R.A. Friedel, A.S. Sharkey, Fuel 51 (1972) 113–115. Crossref
(16). N.E. Vanderborgh, W.J. Verzino, M.A. Fletcher, B.A. Nichols, J. Anal. Appl. Pyrol. 4 (1982) 21–31. Crossref
(17). B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov, Opt. Spectrosc. 128 (2020) 2008–2014. Crossref
(18). B.P. Aduev, Y.V. Kraft, D.R. Nurmukhametov, Z.R. Ismagilov, Chem. Sustain. Dev. 27 (2019) 549–555. Crossref
(19). B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov, Opt. Spectrosc. 128 (2020) 429–435. Crossref
(20). B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov, Chem. Sustain. Dev. 28 (2020) 518–526. Crossref
(21). Y.V. Kraft, D.R. Nurmukhametov, B.P. Aduev, Z.R. Ismagilov, Bulletin of the Kuzbass State Technical University (2019) 5–16. (in Russian) Crossref
(22). C.K. Westbrook, F.L. Dryer, Symp. (Int.) Combust. 18 (1981) 749–767. Crossref
(23). X. Huang, D. Cheng, F. Chen, X. Zhan, J. Energy Chem. 25 (2015) 65–71. Crossref
(24). R.F. Baddour, J.M. Iwasyk, Ind. Eng. Chem. Process Des. Dev. 1 (1962) 169–176. Crossref
(25). M.E. Dry, Catal. Today 71 (2002) 227–241. Crossref
(26). Y. Matsumura, T. Nakamori, Appl. Catal. A-Gen. 258 (2004) 107–114. Crossref
(27). J.U. Jung, W. Nam, K.J. Yoon, G.Y. Han, Korean J. Chem. Eng. 24 (2007) 674–678. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eurasian Chemico-Technological Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.