Mathematical Modeling of the Corrosion Behavior of Austenitic Steels in Chloride-Containing Media During the Operation of Plate-Like Heat Exchangers
DOI:
https://doi.org/10.18321/ectj1473Keywords:
Plate-like heat exchangers, Circulating water, Pitting corrosion, Structure, Neural networksAbstract
Mathematical models that describe the dependences of the critical temperatures of pitting formation of AISI 304, 08Kh18N10, AISI 321, 12Kh18N10T steels in model circulating waters with pH 4…8 and chloride concentrations from 350 to 600 mg/l on their chemical composition and structure have been developed. They are based on linear squares regressions and a feed-forward neural network for reduced feature numbers. Using the developed mathematical models, it was found that the critical pitting temperatures of these steels increase with an increase in the pH of the circulating water, the number of oxides up to 3.95 μm in size, the average distance between titanium nitrides, the Cr content and a decrease in the concentration of chlorides in the circulating waters, the average distance between oxides and average austenite grain diameter. At the same time, it was found that the geometric dimensions of the steel structure most intensively affect their pitting resistance in circulating waters, and the effect of their chemical composition is minimal and is determined by the amount of Cr, which contributes to an increase in the pitting resistance of steels, probably increasing the solubility of nitrogen in the austenite solid solution. It is proposed to use the developed mathematical models to select the optimal heats of these steels for the production of heat exchangers and predict their pitting resistance during their operation in circulating waters.
References
(1). Z.A. Mansurov, M.T. Gabdullin, et al., Belaya kniga po nanotekhnologii. Almaty: Kazakh University, 2021, 340 p. (in Russian)
(2). E. Yoo, A.Yu. Samardak, Y.S. Jeon, A.S. Samardak, et al., J. Alloy. Compd. 843 (2020) 155902. Crossref
(3). V.I. Pokhmurs’kyi, M.S. Khoma, V.A. Vynar, S.A. Kornii, et al., Strength Mater. 53 (2021) 889–895. Crossref
(4). J. Wang, L.F. Zhang, Anti-Corros. Method. Mater. 64 (2017) 252–262. Crossref
(5). І.М. Zin’, V.І. Pokhmurs’kyi, О.P. Khlopyk, O.V. Karpenko, et al., Mater. Sci. 55 (2020) 633–639. Crossref
(6). Т.О. Nenastina, M.V. Ved, M.D. Sakhnenko, V.О. Proskurina, et al., Mater. Sci. 56 (2021) 634–641. Crossref
(7). A. Narivskiy, R. Atchibayev, A. Muradov, K. Mukashev, Y. Yar-Mukhamedov, International Multidisciplinary Scientific GeoConference-SGEM 18 (2018) 267–274. Crossref
(8). G.Sh. Yar-Mukhamedova, Mater. Sci. 35 (2019) 598–600. Crossref
(9). E. Otero, M. Utrilla, A. Urena, C. Munez, Bol. Soc. Esp. Ceram. 43 (2004) 190–192. Crossref
(10). V.A. Bautin, I.V. Bardin, N.S. Kholodkov, S.A. Gudoshnikov, et al., Surf. Interfaces 23 (2021) 100993. Crossref
(11). F.J. Carcel-Carrasco, M. Pascual-Guillamon, L.S. Garcia, F.S. Vicente, et al., Appl. Sci. 9 (2019) 3265. Crossref
(12). S. Alkan, J. Eng. Tribol. 237 (2022). Crossref
(13). O.E. Narivskyi, Corrosion-electrochemical behavior of structural materials for plate heat exchangers working in model waters. [PhD thesis, Lviv], Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 2009, 200 p. (in Ukrain)
(14). H.-Y. Ha, T.-H. Lee, J.-H. Bae, D.W. Chun, Metals 8 (2018) 653. Crossref
(15). L.O. Osoba, R.A. Elemuren, I.C. Ekpe, E. Harkin-Jones, Cogent Eng. 3 (2016) 1150546. Crossref
(16). O.E. Narivs’kyi, S.B. Belikov, Mater. Sci. 44 (2018) 573–580. Crossref
(17). MATLAB Statistics and Machine Learning Toolbox User’s Guide (R2021a). Available online: https://litgu.ru/knigi/programming/480386-matlab-statistics-and-machine-learning-toolbox-users-guide-r2021a.html
(18). H. Demuth, M. Beale, Neural Network Toolbox: For Use with MATLAB. The Mathworks, 2004. Available online: URL
(19). M. Isaiev, G. Mussabek, P. Lishchuk, K. Dubyk, Nanomaterials 12 (2022) 708. Crossref
(20). G.Sh. Yar-Mukhamedova N.D. Sakhnenko, M.V. Ved’, I.Yu. Yermolenko et al., IOP Conf. Ser.: Mater. Sci. Eng. 213 (2019) 012019. Crossref
(21). A. Narivskiy, R. Atchibayev, A. Muradov, K. Mukashev, et al., International Multidisciplinary Scientific GeoConference-SGEM 18 (2018) 267–274. Crossref
(22). Z.F. Yin, X.Z. Wang, L. Liu, J.Q. Wu, et al., J. Mater. Eng. Perfor. 20 (2011) 1330–1335. Crossref
(23). X. Wang, Z. Yang, Z. Wang, Q. Shi, Appl. Surf. Sci. 478 (2019) 492–498. Crossref
(24). G.Sh. Yar-Mukhamedova, Mater. Sci. 37 (2001) 140–143. Crossref
(21). R. Atchibayev, A. Muradov, K. Mukashev et.al. Int. Multidisc. Sc. GeoConf. SGEM 18 (2018). 267–274.
(22). G. Yar-Mukhamedova, D.V. Belyaev, G. Mussabek, A. Sagyndykov, International Multidisciplinary Scientific GeoConference- SGEM 17 (2017) 233–240. Crossref
(23). X. Wang, Z. Yang, Z. Wang, Q. Shi, et al., Appl. Surf. Sci. 478 (2019) 492–498. Crossref
(24). G.Sh. Yar-Mukhamedova, Mater. Sci. 37 (2021) 140–143. Crossref
(25). K. Lutton Cwalina, C.R. Demarest, A.Y. Gerard, J.R. Scully, Curr. Opin. Solid State Mater. Sci. 23 (2019) 129–141. Crossref
(26). G. Yar-Mukhamedova, D.V. Belyaev, G. Mussabek, A. Sagyndykov, International Multidisciplinary Scientific GeoConference-SGEM 17 (2017) 233–240. Crossref
(27). P. Lochyński, M. Domańska, K. Kasprzyk, Ochrona przed Korozją 62 (2019) 225–235. Crossref
(28). T.M. Aldabergenova, S.B. Kislitsin, G.Z. Ganeev, W. Wieleba, Russ. Phys. J. 61 (2018) 1499–1505. Crossref
(29). M. Ved’, N. Sakhnenko, I. Yermolenko, G. Yar-Mukhamedova, et al., Eurasian Chem-Technol. J. 20 (2018) 145–152.
(30). R. Tolulope Loto, Orient. J. Chem. 33 (2017) 1090–1096. Crossref
(31). L.A. Pisarevskii, G.A. Filippov, A.A. Lipatov, Metallurgist 60 (2016) 822–831. Crossref
(32). S. Shejko, G. Sukhomlin, V. Mishchenko, V. Shalomeev, Contributed Papers from Materials Science and Technology, 2018. Crossref
(33). H.-Y. Ha, J. Jang, T.-H. Lee, C. Won, et al., Materials 11 (2018) 2097. Crossref
(34). L.A. Gabdrakhmanova, K.M. Mukashev, F.F. Umarov, et al., J. Nano-Electron. Phys. (2020). Crossref
(35). Y.I. Sachanova, I.Y. Ermolenko, M.V. Ved’, M.D. Sakhnenko, et al., Mater. Sci. 54 (2019) 556–566. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eurasian Chemico-Technological Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.