Mathematical Modeling of the Corrosion Behavior of Austenitic Steels in Chloride-Containing Media During the Operation of Plate-Like Heat Exchangers

Authors

  • O. Narivs’kyi LCC “Ukrspetsmash”, 71111, Gagarin str., Berdyansk, Ukraine
  • R. Atchibayev Institute of Experimental and Theoretical Physics of Al-Farabi Kazakh National University, 050040, 71 Al-Farabi ave., Almaty, Kazakhstan
  • A. Kemelzhanova Institute of Experimental and Theoretical Physics of Al-Farabi Kazakh National University, 050040, 71 Al-Farabi ave., Almaty, Kazakhstan
  • G. Yar-Mukhamedovа Institute of Experimental and Theoretical Physics of Al-Farabi Kazakh National University, 050040, 71 Al-Farabi ave., Almaty, Kazakhstan
  • G. Snizhnoi National University Zaporozhye Polytechnic, 69063, Zhukovskogo str., 64, Zaporozhye, Ukraine
  • S. Subbotin National University Zaporozhye Polytechnic, 69063, Zhukovskogo str., 64, Zaporozhye, Ukraine
  • A. Beisebayeva Institute of Experimental and Theoretical Physics of Al-Farabi Kazakh National University, 050040, 71 Al-Farabi ave., Almaty, Kazakhstan; Research Centre “KazAlfaTech LTD”, 050020, Karasu str., 41A, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1473

Keywords:

Plate-like heat exchangers, Circulating water, Pitting corrosion, Structure, Neural networks

Abstract

 Mathematical models that describe the dependences of the critical temperatures of pitting formation of AISI 304, 08Kh18N10, AISI 321, 12Kh18N10T steels in model circulating waters with pH 4…8 and chloride concentrations from 350 to 600 mg/l on their chemical composition and structure have been developed. They are based on linear squares regressions and a feed-forward neural network for reduced feature numbers. Using the developed mathematical models, it was found that the critical pitting temperatures of these steels increase with an increase in the pH of the circulating water, the number of oxides up to 3.95 μm in size, the average distance between titanium nitrides, the Cr content and a decrease in the concentration of chlorides in the circulating waters, the average distance between oxides and average austenite grain diameter. At the same time, it was found that the geometric dimensions of the steel structure most intensively affect their pitting resistance in circulating waters, and the effect of their chemical composition is minimal and is determined by the amount of Cr, which contributes to an increase in the pitting resistance of steels, probably increasing the solubility of nitrogen in the austenite solid solution. It is proposed to use the developed mathematical models to select the optimal heats of these steels for the production of heat exchangers and predict their pitting resistance during their operation in circulating waters.

References

(1). Z.A. Mansurov, M.T. Gabdullin, et al., Belaya kniga po nanotekhnologii. Almaty: Kazakh University, 2021, 340 p. (in Russian)

(2). E. Yoo, A.Yu. Samardak, Y.S. Jeon, A.S. Samardak, et al., J. Alloy. Compd. 843 (2020) 155902. Crossref

(3). V.I. Pokhmurs’kyi, M.S. Khoma, V.A. Vynar, S.A. Kornii, et al., Strength Mater. 53 (2021) 889–895. Crossref

(4). J. Wang, L.F. Zhang, Anti-Corros. Method. Mater. 64 (2017) 252–262. Crossref

(5). І.М. Zin’, V.І. Pokhmurs’kyi, О.P. Khlopyk, O.V. Karpenko, et al., Mater. Sci. 55 (2020) 633–639. Crossref

(6). Т.О. Nenastina, M.V. Ved, M.D. Sakhnenko, V.О. Proskurina, et al., Mater. Sci. 56 (2021) 634–641. Crossref

(7). A. Narivskiy, R. Atchibayev, A. Muradov, K. Mukashev, Y. Yar-Mukhamedov, International Multidisciplinary Scientific GeoConference-SGEM 18 (2018) 267–274. Crossref

(8). G.Sh. Yar-Mukhamedova, Mater. Sci. 35 (2019) 598–600. Crossref

(9). E. Otero, M. Utrilla, A. Urena, C. Munez, Bol. Soc. Esp. Ceram. 43 (2004) 190–192. Crossref

(10). V.A. Bautin, I.V. Bardin, N.S. Kholodkov, S.A. Gudoshnikov, et al., Surf. Interfaces 23 (2021) 100993. Crossref

(11). F.J. Carcel-Carrasco, M. Pascual-Guillamon, L.S. Garcia, F.S. Vicente, et al., Appl. Sci. 9 (2019) 3265. Crossref

(12). S. Alkan, J. Eng. Tribol. 237 (2022). Crossref

(13). O.E. Narivskyi, Corrosion-electrochemical behavior of structural materials for plate heat exchangers working in model waters. [PhD thesis, Lviv], Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 2009, 200 p. (in Ukrain)

(14). H.-Y. Ha, T.-H. Lee, J.-H. Bae, D.W. Chun, Metals 8 (2018) 653. Crossref

(15). L.O. Osoba, R.A. Elemuren, I.C. Ekpe, E. Harkin-Jones, Cogent Eng. 3 (2016) 1150546. Crossref

(16). O.E. Narivs’kyi, S.B. Belikov, Mater. Sci. 44 (2018) 573–580. Crossref

(17). MATLAB Statistics and Machine Learning Toolbox User’s Guide (R2021a). Available online: https://litgu.ru/knigi/programming/480386-matlab-statistics-and-machine-learning-toolbox-users-guide-r2021a.html

(18). H. Demuth, M. Beale, Neural Network Toolbox: For Use with MATLAB. The Mathworks, 2004. Available online: URL

(19). M. Isaiev, G. Mussabek, P. Lishchuk, K. Dubyk, Nanomaterials 12 (2022) 708. Crossref

(20). G.Sh. Yar-Mukhamedova N.D. Sakhnenko, M.V. Ved’, I.Yu. Yermolenko et al., IOP Conf. Ser.: Mater. Sci. Eng. 213 (2019) 012019. Crossref

(21). A. Narivskiy, R. Atchibayev, A. Muradov, K. Mukashev, et al., International Multidisciplinary Scientific GeoConference-SGEM 18 (2018) 267–274. Crossref

(22). Z.F. Yin, X.Z. Wang, L. Liu, J.Q. Wu, et al., J. Mater. Eng. Perfor. 20 (2011) 1330–1335. Crossref

(23). X. Wang, Z. Yang, Z. Wang, Q. Shi, Appl. Surf. Sci. 478 (2019) 492–498. Crossref

(24). G.Sh. Yar-Mukhamedova, Mater. Sci. 37 (2001) 140–143. Crossref

(21). R. Atchibayev, A. Muradov, K. Mukashev et.al. Int. Multidisc. Sc. GeoConf. SGEM 18 (2018). 267–274.

(22). G. Yar-Mukhamedova, D.V. Belyaev, G. Mussabek, A. Sagyndykov, International Multidisciplinary Scientific GeoConference- SGEM 17 (2017) 233–240. Crossref

(23). X. Wang, Z. Yang, Z. Wang, Q. Shi, et al., Appl. Surf. Sci. 478 (2019) 492–498. Crossref

(24). G.Sh. Yar-Mukhamedova, Mater. Sci. 37 (2021) 140–143. Crossref

(25). K. Lutton Cwalina, C.R. Demarest, A.Y. Gerard, J.R. Scully, Curr. Opin. Solid State Mater. Sci. 23 (2019) 129–141. Crossref

(26). G. Yar-Mukhamedova, D.V. Belyaev, G. Mussabek, A. Sagyndykov, International Multidisciplinary Scientific GeoConference-SGEM 17 (2017) 233–240. Crossref

(27). P. Lochyński, M. Domańska, K. Kasprzyk, Ochrona przed Korozją 62 (2019) 225–235. Crossref

(28). T.M. Aldabergenova, S.B. Kislitsin, G.Z. Ganeev, W. Wieleba, Russ. Phys. J. 61 (2018) 1499–1505. Crossref

(29). M. Ved’, N. Sakhnenko, I. Yermolenko, G. Yar-Mukhamedova, et al., Eurasian Chem-Technol. J. 20 (2018) 145–152.

(30). R. Tolulope Loto, Orient. J. Chem. 33 (2017) 1090–1096. Crossref

(31). L.A. Pisarevskii, G.A. Filippov, A.A. Lipatov, Metallurgist 60 (2016) 822–831. Crossref

(32). S. Shejko, G. Sukhomlin, V. Mishchenko, V. Shalomeev, Contributed Papers from Materials Science and Technology, 2018. Crossref

(33). H.-Y. Ha, J. Jang, T.-H. Lee, C. Won, et al., Materials 11 (2018) 2097. Crossref

(34). L.A. Gabdrakhmanova, K.M. Mukashev, F.F. Umarov, et al., J. Nano-Electron. Phys. (2020). Crossref

(35). Y.I. Sachanova, I.Y. Ermolenko, M.V. Ved’, M.D. Sakhnenko, et al., Mater. Sci. 54 (2019) 556–566. Crossref

Downloads

Published

2022-12-12

How to Cite

Narivs’kyi, O., Atchibayev, R., Kemelzhanova, A., Yar-Mukhamedovа G., Snizhnoi, G., Subbotin, S., & Beisebayeva, A. (2022). Mathematical Modeling of the Corrosion Behavior of Austenitic Steels in Chloride-Containing Media During the Operation of Plate-Like Heat Exchangers. Eurasian Chemico-Technological Journal, 24(4), 295‒302. https://doi.org/10.18321/ectj1473

Issue

Section

Articles