Effect of Electrodeposition Parameters on the Composition and Surface Topography of Nanostructured Coatings by Tungsten with Iron and Cobalt

Authors

  • G. Yar-Mukhamedova Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040, Almaty, Kazakhstan
  • M. Ved’ National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova str., 61002, Kharkiv, Ukraine
  • I. Yermolenko National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova str., 61002, Kharkiv, Ukraine
  • N. Sakhnenko National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova str., 61002, Kharkiv, Ukraine
  • A. Karakurkchi National Technical University “Kharkiv Polytechnic Institute”, 2 Kyrpychova str., 61002, Kharkiv, Ukraine
  • A. Kemelzhanova Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj926

Abstract

 The electrodeposition of binary and ternary coatings Fe-W and Fe-Co-W from mono ligand citrate electrolyte has been investigated. The Fe-Co-W coatings were formed from electrolytes, which composition differs in the ratio of the concentrations of the alloying components and the ligand content. The investigation results indicate a competitive reduction of iron, cobalt and tungsten, the nature of which depends both on the ratio of electrolyte components, and electrolysis parameters. The effect of both current density amplitude and pulse on off time on quality, composition and surface morphology of the galvanic alloys was determined. Coatings deposited on a direct current with a density of more than 6.5 A/dm2, crack and peel off from the substrate due to the inclusion of Fe (III) compounds containing hydroxide anions. The use of non-stationary electrolysis allows us to extend the working range of current density to 8.0 A/dm2 and form electrolytic coatings of sufficient quality with significant current efficiency and the content of the refractory component. The presence of the Co7W6, Fe7W6, α-Fe, and Fe3C phases detected in the Fe-Co-W deposits reflects the competition between the alloying metals reducing from hetero-nuclear complexes. The surface of binary and ternary coatings is characterized by the presence of spherical agglomerates and is more developed in comparison with steel substrate. The parameters Ra and Rq for electrolytic alloy Fe-W are of 0.1, for Fe-Co-W are 0.3, which exceeds the performance of a polished steel substrate (Ra = 0.007 and Rq = 0.010). These properties prospect such alloys as a multifunctional layer are associated with structural features, surface morphology, and phase composition.

References

(1). O.A. Petrii, Russ. Chem. Rev. 84 (2015) 159. Crossref DOI: https://doi.org/10.1070/RCR4438

(2). E. Vernickaite, N. Tsyntsaru, H. Cesiulis, Surf. Coat. Tech. 307 (2016) 1341‒1349. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2016.07.025

(3). A.G. Vidales, L. Dam-Quang, A. Hong, S. Omanovic, Electrochim. Acta 302 (2019) 198‒206. Crossref DOI: https://doi.org/10.1016/j.electacta.2019.02.030

(4). L. Liu, A. Corma, Chem Rev. 118 (2018) 4981‒5079. Crossref DOI: https://doi.org/10.1021/acs.chemrev.7b00776

(5). P.N.S. Casciano, R.L. Benevides, R.A.C. Santana, A.N. Correia, P. Lima-Neto, J. Alloy. Compd. 723 (2017) 164‒171. Crossref DOI: https://doi.org/10.1016/j.jallcom.2017.06.282

(6). J. Matos, S.A. Filatov, G.S. Ahremkova, D.V. Solovei, M.N. Dolgikh, G.S. Kuczynski, E.V. Batirev, Eurasian Chem. Tech. J. 17 (2015) 261‒265. Crossref DOI: https://doi.org/10.18321/ectj266

(7). J. Matos, P.S. Poon, R. Montaña, R. Romero, G.R. Gonçalves, M.A. Schettino Jr, E.C. Passamani, J.C.C. Freitas, Catal. Today, In press, Crossref DOI: https://doi.org/10.1016/j.cattod.2019.06.020

(8). E.P. Barbano, F.S. Da Silva, I.A. Carlos, E. Vallés, J. Alloy. Compd. 695 (2016) 319‒328. Crossref DOI: https://doi.org/10.1016/j.jallcom.2016.10.208

(9). M.V. Ved’, M.D. Sakhnenko, H.V. Karakurkchi, I.Yu. Ermolenko, L.P. Fomina, Mater. Sci. 51 (2016) 701‒710. Crossref DOI: https://doi.org/10.1007/s11003-016-9893-5

(10). F. Zouch, Z. Antar, A. Bahri, K. Elleuch, M. Urgen, Trybology 140 (2018) 011301. Crossref DOI: https://doi.org/10.1115/1.4036628

(11). S.A. Silkin, A.V. Gotelyak, N.I. Tsyntsaru, A.I. Dikusar, Surface Engineering and Applied Electrochemistry 53 (2017) 7‒14. Crossref DOI: https://doi.org/10.3103/S1068375517010136

(12). M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam, V. Torabinejad, The Canadian Journal of Metallurgy and Materials Science 55 (2016) 303‒311. Crossref DOI: https://doi.org/10.1080/00084433.2016.1190542

(13). A. Nicolenco, N. Tsyntsaru, J. Fornell, E. Pellicer, J. Reklaitis, D. Baltrunas, H. Cesiulis, J. Sort, Mater. Design 139 (2018) 429‒438. Crossref DOI: https://doi.org/10.1016/j.matdes.2017.11.011

(14). S. Mehrizi, M. Heydarzadeh, J. Mater. Sci: Mater. El. 26 (2015) 7381‒7389. Crossref DOI: https://doi.org/10.1007/s10854-015-3368-6

(15). E.P. Barbano, I.A. Carlos, E. Vallés, Surf. Coat. Tech. 324 (2017) 80–84. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2017.05.071

(16). G. Yar-Mukhamedova, M. Ved’, N. Sakhnenko, M. Koziar, Appl. Surf. Sci. 421 (2017) 68–76. Crossref DOI: https://doi.org/10.1016/j.apsusc.2017.01.196

(17). Z. Ghaferi, S. Sharafi, M.E. Bahrololoom, Appl. Surf. Sci. 355 (2015) 766‒773. Crossref DOI: https://doi.org/10.1016/j.apsusc.2015.07.083

(18). M. Rasoulis, D. Vernardou, Coatings 7 (2017) 100. Crossref DOI: https://doi.org/10.3390/coatings7070100

(19). G.Sh. Yar-Mukhamedova, N.D. Sakhnenko, M.V. Ved’, I.Yu. Yermolenko, S.I. Zyubanova. IOP Conf. Ser.: Mater. Sci. Eng. 213 (2017) 012019. Crossref DOI: https://doi.org/10.1088/1757-899X/213/1/012019

(20). L. Anicai, S. Costovici, A. Cojocaru, A. Manea, T. Visan. The International Journal of Surface Engineering and Coatings 93 (2015) 302–312. Crossref DOI: https://doi.org/10.1080/00202967.2015.1117262

(21). R. Mardani, H. Shahmirzaee, H. Mohammad, R. Vahdani, Surf. Coat. Tech. 324 (2017) 281–287. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2017.05.087

(22). M.D. Sakhnenko, M.V. Ved’, I.Yu. Ermolenko Yu.K. Hapon, M.O. Kozyar, Mater. Sci. 52 (2017) 680‒686. Crossref DOI: https://doi.org/10.1007/s11003-017-0009-7

(23). H. Zhou, Z. Liao, C. Fang, H. Li, B. Feng, S. Xu, G. Cao, Y. Kuang, T. Nonferr. Metal. Soc. 28 (2018) 88–95. Crossref DOI: https://doi.org/10.1016/S1003-6326(18)64641-2

(24). L. Ma, X. Xi, Z. Nie, T. Dong, Y. Mao, Int. J. Electrochem. Sci. 12 (2017) 1034–1051. Crossref DOI: https://doi.org/10.20964/2017.02.37

(25). E. Vernickaite, Z. Antar, A. Nicolenco, R. Kreivaitis, N. Tsyntsaru, H. Cesiulis, Tribological and corrosion properties of iron-based alloys. Proc. 8th Inter. Sci. Conf. “BALTTRIB 2015”. (Aleksandras Stulginskis University, February, 25, 2016) Kaunas, Lithuania, 2016, p. 162–169. Crossref DOI: https://doi.org/10.15544/balttrib.2015.29

(26). G.Sh. Yar-Mukhamedova, M.V. Ved’, N.D. Sakhnenko, T. Nenastina. Composition Electrolytic Coatings with Given Functional Properties, Applied Surface Science, Gurrappa Injeti, IntechOpen (2019) 93‒110. Crossref DOI: https://doi.org/10.5772/intechopen.84519

(27). M. Ved’, N. Sakhnenko, I. Yermolenko, G. Yar- Mukhamedova, R. Atchibayev. Eurasian Chem. Tech. J. 20 (2018) 145–152. Crossref DOI: https://doi.org/10.18321/ectj697

Downloads

Published

26-03-2020

How to Cite

Yar-Mukhamedova, G., Ved’, M., Yermolenko, I., Sakhnenko, N., Karakurkchi, A., & Kemelzhanova, A. (2020). Effect of Electrodeposition Parameters on the Composition and Surface Topography of Nanostructured Coatings by Tungsten with Iron and Cobalt. Eurasian Chemico-Technological Journal, 22(1), 19–25. https://doi.org/10.18321/ectj926

Issue

Section

Articles