Study of Complexation Patterns in the System Ni2+, MoO42–, P2O74–, Cit3–for the Development of Poly-Ligand Electrolytes (Study of complexation patterns)
DOI:
https://doi.org/10.18321/ectj1638Keywords:
potentiometric method, unsteadiness constant, complexation, molybdenum, nickel, citrate ion, heteronuclear complex, polyligand electrolyteAbstract
The complexation behavior in systems containing Ni2+, MoO42−, P2O74−, Cit3− - ions have been thoroughly investigated. The study determined the composition and instability constants of both mono- and biligand complex compounds at a constant ionic strength of the solution (Ic=1). By analyzing the concentration ratios of the complexing agent and ligands, the composition of mono- and polyligand complexes was elucidated. The complexation study utilized the potentiometric method, which is based on the functional dependence of the potential of the indicator electrode on the concentration of the complexing agent ions. The results enabled the calculation of the ionic composition of aqueous solutions of nickel complexes with citrate and diphosphate ions, depending on their concentrations. A proposed scheme for the formation of heteronuclear nickel-molybdenum complexes takes into account the sequence of component introduction into the electrolyte to form complexes of a specific composition. These findings were applied to develop electrolyte compositions for coating with alloys based on iron subgroup metals with molybdenum. These alloys exhibit several valuable properties, including corrosion resistance, electrocatalytic activity in hydrogen production, and enhanced operational characteristics.
References
(1). Y.E. Sknar, I.V. Sknar, O.O. Savchuk, F.I. Danilov, Surf. Coat. Tech. 387 (2020) 125542. Crossref
(2). N. Tsyntsaru, H. Cesiulis, M. Donten, et al., Surf. Eng. Appl. Electrochem. 48 (2012) 491–520. Crossref
(3). Q.F. Zhou, L.Y. Lu, L.N. Yu, et al., Electrochim. Acta 106 (2013) 258–264. Crossref
(4). A.V. Karakurkchi, M.V. Ved', N.D. Sakhnenko, et al., Funct. Mater. 22 (2015) 181–187. Crossref
(5). Y.S. Yapontseva, T.V. Maltseva, V.S. Kublapovsku, Mater. Sci. 56 (2021) 649–653. Crossref
(6). Т.О. Nenastina, M.V. Ved, M.D. Sakhnenko, et. al., Mater. Sci. 56 (2021) 634–641. Crossref
(7). V. Nikitenko, V. Kublanovsky, Y. Yapontseva, Ukrainian Chemistry Journal 88 (2022) 113–122. Crossref
(8). M. Pourbaix, J. Burbank, J. Electrochem. Soc. 111 (1964). Crossref
(9). Y.S. Yapontseva, V.S. Кublanovsky, T.V. Маltseva, et al., J. Phys. Chem. 126 (2022) 9437–9445. Crossref
(10). T.A. Nenastina, M.V. Ved’, N.D. Sakhnenko, V.O. Proskurina, Surf. Eng. Appl. Electrochem. 57 (2021) 59–66. Crossref
(11). O.L. Bersirova, V.S. Kublanovsky, Mater. Sci. 54 (2019) 506–511. Crossref
(12). A. Panichkin, W. Wieleba, A. Kenzhegulov et al. Mater. Res. Express. 10 (2023) 086502. Crossref
(13). G. Yar-Mukhamedova, M. Ved’, I. Yermolenko, N. Sakhnenko, et al., Eurasian Chem.-Technol. J. 22 (2020) 19–25. Crossref
(14). A. Kenzhegulov, A. Mamaeva, A. Panichkin, et al., Coatings 12 (2022) 564. Crossref
(15). G. Mussabek, I. Mirgorodskij, A. Kharin, et al., J. Nanoelectron Optoe. 9 (2015) 738–740. Crossref
(16). Y. Yapontseva, V. Kublanovsky, T. Maltseva, et al. J. Electrochem. Society 169 (2022) 062507. Crossref
(17). T. Leśniewski, W. Wieleba, J. Krawczyk, et al., Aviation 28 (2024) 49–53. Crossref
(18). M. Dziubek, M. Rutkowska-Gorczyca, W. Dudziński, D. Grygier, Materials 15 (2022) 2622. Crossref
(19). G. Yar-Mukhamedova, M. Ved’, N. Sakhnenko, et al., Adv. Mater. Sci. Eng. 98 (2021) 5511127. Crossref
(20). Y. Yapontseva, V. Kublanovsky, Turk. J. Chem. 43 (2019) 73–83. Crossref
(21). A.M. Gudymenko, T.V. Mal’tseva, V.S. Kublanovsky, Surf. Engin. Appl. Electrochem. 59 (2023) 231–235 Crossref
(22). Y.S. Yapontseva, T.V. Maltseva, V.S. Kublanovsky, O.A. Vyshnevskyi, J. Mater. Res. 37 (2022) 2216–2224. Crossref
(23). G.S. Yar-Mukhamedova, A.M. Darisheva, E.Sh. Yar-Mukhamedov, Mater. Sci. 54 (2019) 907–912. Crossref
(24). Yu.I. Sachanova, I.Yu. Ermolenko, M.V. Ved’, et al., Mat. Sci. 54 (2019) 556–566. Crossref
(25). Y. Yapontseva, V. Kublanovsky, T. Maltseva, et al., Mater. Adv. 4 (2023) 3662–3670. Crossref
(26). N. Ashurov, B. Oksengendler, S. Maksimov, et al., Eurasian Chem.-Technol. J. 24 (2022) 229–239. Crossref
(27). X. Wang, Z. Yang, Z. Wang, et al., Appl. Surf. Sci. 478 (2019) 492–498. Crossref
(28). O.E. Narivs’kyi, S.B. Belikov, Mater. Sci. 44 (2018) 573–580. Crossref
(29). O.E. Narivskyi, S.A. Subbotin, T.V. Pulina, M.S. Khoma, Mater. Sci. 58 (2022) 41–46. Crossref
(30) T.V. Maltseva, E.O. Kolomiets, Y.S. Dzyazko, S. Scherbakov, Appl. Nanosci. (Switzerland) 9 (2019) 997–1004. Crossref
(31). V.N. Nikitenko, E.A. Babenkov, O.L. Bersirova, V.S. Kublanovsky, Himia, Fizika ta Tehnologia Poverhni 15 (2024) 35–42. Crossref
(32). Y.S. Yapontseva, T.V. Maltseva, V.S. Kublanovsky, O.A. Vyshnevskyi, Mater. Sci. 59 (2023) 77–82. Crossref
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.