Study of Complexation Patterns in the System Ni2+, MoO42–, P2O74–, Cit3–for the Development of Poly-Ligand Electrolytes (Study of complexation patterns)

Authors

  • T. Nenastina Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo str., Kharkov, Ukraine
  • M. Sakhnenko National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova str., Kharkiv, Ukraine
  • S. Oksak Kharkiv National Automobile and Highway University, 25 Yaroslava Mudrogo str., Kharkov, Ukraine
  • G. Yar-Mukhamedova Al-Farabi Kazakh National University, 050040, Al-Farabi ave., 71, Almaty, Kazakhstan
  • D. Zellele Al-Farabi Kazakh National University, 050040, Al-Farabi ave., 71, Almaty, Kazakhstan
  • G. Mussabek Al-Farabi Kazakh National University, 050040, Al-Farabi ave., 71, Almaty, Kazakhstan
  • A. Imanbayeva Al-Farabi Kazakh National University, 050040, Al-Farabi ave., 71, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1638

Keywords:

potentiometric method, unsteadiness constant, complexation, molybdenum, nickel, citrate ion, heteronuclear complex, polyligand electrolyte

Abstract

The complexation behavior in systems containing Ni2+, MoO42−, P2O74−, Cit3− - ions have been thoroughly investigated. The study determined the composition and instability constants of both mono- and biligand complex compounds at a constant ionic strength of the solution (Ic=1). By analyzing the concentration ratios of the complexing agent and ligands, the composition of mono- and polyligand complexes was elucidated. The complexation study utilized the potentiometric method, which is based on the functional dependence of the potential of the indicator electrode on the concentration of the complexing agent ions. The results enabled the calculation of the ionic composition of aqueous solutions of nickel complexes with citrate and diphosphate ions, depending on their concentrations. A proposed scheme for the formation of heteronuclear nickel-molybdenum complexes takes into account the sequence of component introduction into the electrolyte to form complexes of a specific composition. These findings were applied to develop electrolyte compositions for coating with alloys based on iron subgroup metals with molybdenum. These alloys exhibit several valuable properties, including corrosion resistance, electrocatalytic activity in hydrogen production, and enhanced operational characteristics.

References

(1). Y.E. Sknar, I.V. Sknar, O.O. Savchuk, F.I. Danilov, Surf. Coat. Tech. 387 (2020) 125542. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2020.125542

(2). N. Tsyntsaru, H. Cesiulis, M. Donten, et al., Surf. Eng. Appl. Electrochem. 48 (2012) 491–520. Crossref DOI: https://doi.org/10.3103/S1068375512060038

(3). Q.F. Zhou, L.Y. Lu, L.N. Yu, et al., Electrochim. Acta 106 (2013) 258–264. Crossref DOI: https://doi.org/10.1016/j.electacta.2013.05.094

(4). A.V. Karakurkchi, M.V. Ved', N.D. Sakhnenko, et al., Funct. Mater. 22 (2015) 181–187. Crossref DOI: https://doi.org/10.15407/fm22.02.181

(5). Y.S. Yapontseva, T.V. Maltseva, V.S. Kublapovsku, Mater. Sci. 56 (2021) 649–653. Crossref DOI: https://doi.org/10.1007/s11003-021-00477-7

(6). Т.О. Nenastina, M.V. Ved, M.D. Sakhnenko, et. al., Mater. Sci. 56 (2021) 634–641. Crossref DOI: https://doi.org/10.1007/s11003-021-00475-9

(7). V. Nikitenko, V. Kublanovsky, Y. Yapontseva, Ukrainian Chemistry Journal 88 (2022) 113–122. Crossref DOI: https://doi.org/10.33609/2708-129X.88.04.2022.113-122

(8). M. Pourbaix, J. Burbank, J. Electrochem. Soc. 111 (1964). Crossref DOI: https://doi.org/10.1149/1.2426051

(9). Y.S. Yapontseva, V.S. Кublanovsky, T.V. Маltseva, et al., J. Phys. Chem. 126 (2022) 9437–9445. Crossref DOI: https://doi.org/10.1021/acs.jpcc.2c00445

(10). T.A. Nenastina, M.V. Ved’, N.D. Sakhnenko, V.O. Proskurina, Surf. Eng. Appl. Electrochem. 57 (2021) 59–66. Crossref DOI: https://doi.org/10.3103/S1068375521010099

(11). O.L. Bersirova, V.S. Kublanovsky, Mater. Sci. 54 (2019) 506–511. Crossref DOI: https://doi.org/10.1007/s11003-019-00211-4

(12). A. Panichkin, W. Wieleba, A. Kenzhegulov et al. Mater. Res. Express. 10 (2023) 086502. Crossref DOI: https://doi.org/10.1088/2053-1591/acead7

(13). G. Yar-Mukhamedova, M. Ved’, I. Yermolenko, N. Sakhnenko, et al., Eurasian Chem.-Technol. J. 22 (2020) 19–25. Crossref DOI: https://doi.org/10.18321/ectj926

(14). A. Kenzhegulov, A. Mamaeva, A. Panichkin, et al., Coatings 12 (2022) 564. Crossref DOI: https://doi.org/10.3390/coatings12050564

(15). G. Mussabek, I. Mirgorodskij, A. Kharin, et al., J. Nanoelectron Optoe. 9 (2015) 738–740. Crossref DOI: https://doi.org/10.1166/jno.2014.1670

(16). Y. Yapontseva, V. Kublanovsky, T. Maltseva, et al. J. Electrochem. Society 169 (2022) 062507. Crossref DOI: https://doi.org/10.1149/1945-7111/ac7898

(17). T. Leśniewski, W. Wieleba, J. Krawczyk, et al., Aviation 28 (2024) 49–53. Crossref DOI: https://doi.org/10.3846/aviation.2024.21482

(18). M. Dziubek, M. Rutkowska-Gorczyca, W. Dudziński, D. Grygier, Materials 15 (2022) 2622. Crossref DOI: https://doi.org/10.3390/ma15072622

(19). G. Yar-Mukhamedova, M. Ved’, N. Sakhnenko, et al., Adv. Mater. Sci. Eng. 98 (2021) 5511127. Crossref DOI: https://doi.org/10.1155/2021/5511127

(20). Y. Yapontseva, V. Kublanovsky, Turk. J. Chem. 43 (2019) 73–83. Crossref DOI: https://doi.org/10.3906/kim-1806-27

(21). A.M. Gudymenko, T.V. Mal’tseva, V.S. Kublanovsky, Surf. Engin. Appl. Electrochem. 59 (2023) 231–235 Crossref DOI: https://doi.org/10.3103/S1068375523020096

(22). Y.S. Yapontseva, T.V. Maltseva, V.S. Kublanovsky, O.A. Vyshnevskyi, J. Mater. Res. 37 (2022) 2216–2224. Crossref DOI: https://doi.org/10.1557/s43578-022-00497-2

(23). G.S. Yar-Mukhamedova, A.M. Darisheva, E.Sh. Yar-Mukhamedov, Mater. Sci. 54 (2019) 907–912. Crossref DOI: https://doi.org/10.1007/s11003-019-00279-y

(24). Yu.I. Sachanova, I.Yu. Ermolenko, M.V. Ved’, et al., Mat. Sci. 54 (2019) 556–566. Crossref DOI: https://doi.org/10.1007/s11003-019-00218-x

(25). Y. Yapontseva, V. Kublanovsky, T. Maltseva, et al., Mater. Adv. 4 (2023) 3662–3670. Crossref DOI: https://doi.org/10.1039/D3MA00309D

(26). N. Ashurov, B. Oksengendler, S. Maksimov, et al., Eurasian Chem.-Technol. J. 24 (2022) 229–239. Crossref DOI: https://doi.org/10.18321/ectj1436

(27). X. Wang, Z. Yang, Z. Wang, et al., Appl. Surf. Sci. 478 (2019) 492–498. Crossref DOI: https://doi.org/10.1016/j.apsusc.2019.01.291

(28). O.E. Narivs’kyi, S.B. Belikov, Mater. Sci. 44 (2018) 573–580. Crossref DOI: https://doi.org/10.1007/s11003-009-9107-5

(29). O.E. Narivskyi, S.A. Subbotin, T.V. Pulina, M.S. Khoma, Mater. Sci. 58 (2022) 41–46. Crossref DOI: https://doi.org/10.1007/s11003-022-00628-4

(30) T.V. Maltseva, E.O. Kolomiets, Y.S. Dzyazko, S. Scherbakov, Appl. Nanosci. (Switzerland) 9 (2019) 997–1004. Crossref DOI: https://doi.org/10.1007/s13204-018-0689-9

(31). V.N. Nikitenko, E.A. Babenkov, O.L. Bersirova, V.S. Kublanovsky, Himia, Fizika ta Tehnologia Poverhni 15 (2024) 35–42. Crossref DOI: https://doi.org/10.15407/hftp15.01.035

(32). Y.S. Yapontseva, T.V. Maltseva, V.S. Kublanovsky, O.A. Vyshnevskyi, Mater. Sci. 59 (2023) 77–82. Crossref DOI: https://doi.org/10.1007/s11003-023-00746-7

Downloads

Published

22-10-2024

How to Cite

Nenastina, T., Sakhnenko, M., Oksak, S., Yar-Mukhamedova, G., Zellele, D., Mussabek, G., & Imanbayeva, A. (2024). Study of Complexation Patterns in the System Ni2+, MoO42–, P2O74–, Cit3–for the Development of Poly-Ligand Electrolytes (Study of complexation patterns). Eurasian Chemico-Technological Journal, 26(3), 155–160. https://doi.org/10.18321/ectj1638

Issue

Section

Articles