Composition and Corrosion Behavior of Iron-Cobalt-Tungsten

Authors

  • M. Ved’ National Technical University “Kharkiv Polytechnic Institute” 2, Kyrpychova str., 61002, Kharkiv, Ukraine
  • N. Sakhnenko National Technical University “Kharkiv Polytechnic Institute” 2, Kyrpychova str., 61002, Kharkiv, Ukraine
  • I. Yermolenko National Technical University “Kharkiv Polytechnic Institute” 2, Kyrpychova str., 61002, Kharkiv, Ukraine
  • G. Yar-Mukhamedova Al-Farabi Kazakh National University, IETP, al-Farabi ave. 71, 050040 Almaty, Kazakhstan
  • R. Atchibayev Al-Farabi Kazakh National University, IETP, al-Farabi ave. 71, 050040 Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj697

Abstract

Principles of three component Iron-Cobalt-Tungsten alloys electrodeposition from complex Fe (III) based citrate electrolytes are discussed. It is shown, that deposition of ternary alloys proceeds through competitive reduction of cobalt and tungsten with iron. With increasing ligand concentration coatings are enriched with a refractory component; however, increasing current density favors a reverse trend. The effect of both current density and pulse on/off time on the quality, content of alloying metals and surface topography of electrolytic coatings were determined. The application of pulsed electrolysis provides increasing tungsten content up to 13 at.%, at current efficiency of 70–75%. Globular relief of Fe-Co-W coatings is caused by refractory metals incorporation, and crystalline and amorphous parts of structure are visualized by X-ray spectroscopy, including inter-metallic phases Co7W6, Fe7W6 along with α-Fe and Fe3C. The crystallite size of the amorphous part is near 7–8 nm. Corrosion resistance of the coatings is 1.3–2.0 orders of magnitude higher than the substrate parameters as follows from data of polarization resistance method and electrode impedance spectroscopy.

References

(1). N. Tsyntsaru, H. Cesiulis, M. Donten, J. Sort, E. Pellicer, E.J. Podlaha-Murphy, Surf. Engin. Appl. Electrochem. 48 (6) (2012) 491–520. Crossref DOI: https://doi.org/10.3103/S1068375512060038

(2). E.J. Podlaha, D. Landolt, J. Electrochem. Soc. 144 (5) (1997) 1672–1680. Crossref DOI: https://doi.org/10.1149/1.1837658

(3). G. Yar-Mukhamedova, M. Ved’, N. Sakhnenko, A. Karakurkchi, I. Yermolenko, Appl. Surf. Sci. 383 (2016) 346–352. Crossref DOI: https://doi.org/10.1016/j.apsusc.2016.04.046

(4). H. Capel, P.H. Shipway, S.J. Harris, Wear 255 (2003) 917–923. Crossref DOI: https://doi.org/10.1016/S0043-1648(03)00241-2

(5). M.V. Ved’, M.D. Sakhnenko, H.V. Karakurkchi, I.Yu. Ermolenko, L.P. Fomina, Mater. Sci. 51 (5) (2016) 701–710. Crossref DOI: https://doi.org/10.1007/s11003-016-9893-5

(6). H. Feng-jiao, L. Jing-tian, L. Xin, H. Yu-ning, Trans. Nonferrous Met. Soc. China 14 (5) (2004) 901–906.

(7). G. Yar-Mukhamedova, M. Ved’, N. Sakhnenko, Appl. Surf. Sci. 421 (2017) 68–76. Crossref DOI: https://doi.org/10.1016/j.apsusc.2017.01.196

(8). S.A. Silkin, A. Gotelyak, N. Tsyntsaru et al Proceedings of the 8th International Scientific Conf. “BALTTRIB 2015”. (2016) 51–56.

(9). L. Ma, X. Xi, Z. Nie, T. Dong, Y. Mao, Int. J. Electrochem. Sci. 12 (2017) 1034–1051. Crossref DOI: https://doi.org/10.20964/2017.02.37

(10). N. Tsyntsaru, A. Dikusar, H. Cesiulis, J.-P. Celis, Zh. Bobanova, S. Sidel’nikova, S. Belevskii, Yu. Yapontseva, O. Bersirova, V. Kublanovskii, Powder Metall. Met. Ceram. 48 (7-8) (2009) 419–428. Crossref DOI: https://doi.org/10.1007/s11106-009-9150-7

(11). Y.S. Yapontseva, A.I. Dikusar, V.S. Kyblanovskii, Surf. Engin. Appl. Electrochem. 50 (2014) 330–336. Crossref DOI: https://doi.org/10.3103/S1068375514040139

(12). E. Gomez, E. Pellicer, E. Valles, J. Electroanal. Chem. 517 (2001) 109–116. Crossref DOI: https://doi.org/10.1016/S0022-0728(01)00682-9

(13). E. Gómez, E, Pellicer, E, Vallés, J. Electroanal. Chem 568 (2004) 29–36. Crossref DOI: https://doi.org/10.1016/j.jelechem.2003.12.032

(14). V.S. Kublanovsky, Yu.S. Yapontseva, Electrocatalysis 5 (2014) 372–378. Crossref DOI: https://doi.org/10.1007/s12678-014-0197-y

(15). M. Glushkova, T. Bairachna, M. Ved, M. Sakhnenko, In MRS Proceedings. Cambridge University Press. 12 (2013) 1491. DOI: https://doi.org/10.1557/opl.2012.1672

(16). J. Larminie, A. Dicks Fuel cell systems explained, 2nd ed. John Wiley & Sons Ltd, Chichester (2003) 121–137. DOI: https://doi.org/10.1002/9781118878330.ch5

(17). G. Yar-Mukhamedova, А. Darisheva, K. Kasimzhanov, D. Babazhanov, B. Barkitova, Eurasian Chemico-Technological Journal 17 (2015) 209–212. Crossref DOI: https://doi.org/10.18321/ectj246

(18). M. Skyllas-Kazacos, M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, and M. Saleem, J. Electrochem. Soc. 158 (2011) 55–79. Crossref DOI: https://doi.org/10.1149/1.3599565

(19). S.M. Haile, Acta Mater. 51 (2003) 5981–6000. Crossref DOI: https://doi.org/10.1016/j.actamat.2003.08.004

(20). N. Sakhnenko, M. Ved, Y. Hapon, T. Nenastina, Russ. J. Appl. Chem. 88 (2015)1941–1945. Crossref DOI: https://doi.org/10.1134/S1070427215012006X

(21). E Vernickaite, N Tsyntsaru, H. Cesiulis, Surface and Coatings Technology 307 (2016) 1322- 1328. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2016.07.049

(22). I.Y. Yermolenko, M.V. Ved, N.D. Sakhnenko, Y.I. Sachanova, Nanoscale Res. Lett. 12(1) (2017) 352. Crossref DOI: https://doi.org/10.1186/s11671-017-2128-3

(23). M.V. Ved’, N.D. Sakhnenko, A.V. Karakurchi, S.I. Zyubanova, Russ. J. Appl. Chem. 87 (2014) 276−282. Crossref DOI: https://doi.org/10.1134/S1070427214030057

(24). I. Shao, P.M. Vereecken, C.L. Chien, R.C. Cammarata, and P.C. Searson, J. Electrochem. Soc. 150 (2003) 184–188. Crossref DOI: https://doi.org/10.1149/1.1553789

(25). N. Tsyntsaru, H. Cesiulis, A. Budreika, X. Ye, R. Juskenas, J.-P.Celis, Surface and Coatings Technology 206 (2012) 4262–4269. Crossref DOI: https://doi.org/10.1016/j.surfcoat.2012.04.036

(26). D.Z. Grabco, I.A. Dikusar, V.I. Petrenko, E.E. Harea, O.A. Shikimaka, Surf. Engin. Appl. Electrochem. 43 (2007) 11–17. Crossref DOI: https://doi.org/10.3103/S1068375507010024

(27). A.V. Karakurkchi, M.V. Ved’, N.D. Sakhnenko, I.Yu. Ermolenko, Russ. J. Appl. Chem. 88 (2015) 1860−1869. Crossref DOI: https://doi.org/10.1134/S1070427215011018X

(28). N Elezović, B.N. Grgur, N.V. Krstajić, and V.D. Jović, J. Serb. Chem. Soc. 70(6) (2005) 879– 889. Crossref DOI: https://doi.org/10.2298/JSC0506879G

(29). E. Gomez, E. Pellicer, X. Alcobe, E. Valles, J. Solid State Electrochem. 8 (2004) 497–504. Crossref DOI: https://doi.org/10.1007/s10008-004-0495-z

(30). F.I. Danilov, I.V. Sknar, Yu.E. Sknar, Russ. J. Electrochem. 50 (2014) 293‒296. Crossref DOI: https://doi.org/10.1134/S1023193514030045

(31). D.P. Weston, S.J. Harris, P.H. Shipway, N.J. Weston, G.N. Yap, Electrochim. Acta 55 (2010) 5695‒5708. Crossref DOI: https://doi.org/10.1016/j.electacta.2010.05.005

(32). G.Sh. Yar-Mukhamedova, N.D. Sakhnenko, M.V. Ved’, I.Yu. Yermolenko and S.I. Zyubanova, IOP Conf. Series: Materials Science and Engineering 213 (2017) 012019. Crossref DOI: https://doi.org/10.1088/1757-899X/213/1/012019

(33). M.D. Sakhnenko, M.V. Ved’, I.Yu. Ermolenko, Yu.K. Hapon, M.O. Kozyar, Mater Sci. 52 (2017) 680–686. Crossref DOI: https://doi.org/10.1007/s11003-017-0009-7

(34). N. Ćirović, P. Spasojević, L. Ribić-Zelenović, P. Mašković, M. Spasojević, Sci. Sinter. 47 (2015) 347–365. Crossref DOI: https://doi.org/10.2298/SOS1503347C

(35). I.Y. Yermolenko, M.V. Ved’, A.V. Karakurkchi, N.D. Sakhnenko, Z.I. Kolupaieva, Voprosy khimii i khimicheskoi tekhnologii [Issues of Chemistry and Chemical Technology] 2 (III) 4‒14

(36). A.B. Sagyndykov, Zh.K. Kalkozova, G.Sh. Yar-Mukhamedova, Kh.A. Abdullin, Tech. Phys. 62 (11) (2017) 1675–1678. Crossref DOI: https://doi.org/10.1134/S106378421711024X

(37). A.V. Karakurkchi, M.V. Ved’, N.D. Sakhnenko, I.Yu. Yermolenko, S.I. Zyubanova, Z.I. Kolupayeva, Funct. Mater. 22 (2015) 181–187. Crossref DOI: https://doi.org/10.15407/fm22.02.181

(38). M.O. Glushkova, M.V. Ved, M.D. Sakhnenko, Mater Sci. 49 (2013) 292–297. Crossref DOI: https://doi.org/10.1007/s11003-013-9613-3

Downloads

Published

30-05-2018

How to Cite

Ved’, M., Sakhnenko, N., Yermolenko, I., Yar-Mukhamedova, G., & Atchibayev, R. (2018). Composition and Corrosion Behavior of Iron-Cobalt-Tungsten. Eurasian Chemico-Technological Journal, 20(2), 145–152. https://doi.org/10.18321/ectj697

Issue

Section

Articles