Surface Modifications of CuO Doped Carbonaceous Nanosorbents and their CO2 Sorption Properties

Authors

  • Yu.V. Ilyin Ministry of Emergency Situations of the Republic of Kazakhstan, 8 Mangilik El str. 8, entrance 2, Astana, Kazakhstan
  • K.K. Kudaibergenov Satbayev University, 22 Satbaev str., Almaty, Kazakhstan; Al-Farabi Kazakh National University, 172 al-Farabi ave., Almaty, Kazakhstan
  • S.D. Sharipkhanov M. Gabdullin Academy of Civil Protection of the Ministry of Emergency Situations of the Republic of Kazakhstan, 136 Akan-Seri str., Kokshetau, Kazakhstan
  • Z.A. Mansurov Al-Farabi Kazakh National University, 172 al-Farabi ave., Almaty, Kazakhstan
  • A.A. Zhaulybayev M. Gabdullin Academy of Civil Protection of the Ministry of Emergency Situations of the Republic of Kazakhstan, 136 Akan-Seri str., Kokshetau, Kazakhstan
  • M.K. Atamanov Al-Farabi Kazakh National University, 172 al-Farabi ave., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1493

Keywords:

Carbonized rice husk, Carbonized apricot stone, Carbon dioxide, Copper oxide nanoparticles, Adsorption

Abstract

In this study, carbonized apricot stones and rice husk were utilized as feedstock for the synthesis of CuO-loaded carbonized sorbents for the removal of carbon dioxide (CO2) from gas mixtures. The specific surface area of carbonized sorbents increased with increasing carbonization temperature, resulting in a porous structure with enhanced sorption capacity. The presence of pores and the development of porosity in the sorbents were confirmed by SEM images. CuO nanoparticles were well-dispersed on the surface of carbonized sorbents, and the particle sizes were between 60‒100 nm. Chemical interactions between acidic carbon dioxide and basic copper oxide led to improved adsorption properties. The sorption characteristics of the carbonized sorbents were studied under dynamic conditions, and the results showed that CuO-loaded carbonized apricot stones and rice husk had the maximum sorption capacity for CO2, with efficiencies of 98% and 91%, respectively. These findings indicate that carbonized apricot stones and rice husk can be utilized as low-cost and eco-friendly feedstock for the production of efficient CO2 sorbents.

References

(1). C. Halliday and T.A. Hatton, Ind. Eng. Chem. Res. 60 (2021) 9313‒9346. Crossref

(2). J. Godin, W. Liu, S. Ren, C.C. Xu, J. Environ. Chem. Eng. 9 (2021) 105644. Crossref

(3). S. He, G. Chen, H. Xiao, G. Shi, et al., J. Colloid Interface Sci. 582 (2021) 90‒101. Crossref

(4). M.S. Reza, C.S. Yun, S. Afroze, N. Radenahmad, et al., Arab J. Basic Appl. Sci. 27 (2020) 208‒238. Crossref

(5). M.K. Atamanov, R. Amrousse, J. Jandosov, K. Hori, et al., Eurasian Chem.-Technol. J. 19 (2017) 215‒222. Crossref

(6). D. Wu, Y. Yang, J. Liu, Y. Zheng, Energy Fuels 34 (2020) 6077‒6084. Crossref

(7). J. Xiao, Y. Wang, T.C. Zhang, S. Yuan, Appl. Surf. Sci. 562 (2021) 150128. Crossref

(8). S.Y. Lee and S.J. Park, J. Ind. Eng. Chem. 23 (2015) 1‒11. Crossref

(9). Y.C. Chiang and R.S. Juang, J. Taiwan Inst. Chem. Eng. 71 (2017) 214‒234. Crossref

(10). J. Shao, C. Ma, J. Zhao, L. Wang, X. Hu, Colloids Surf. A: Physicochem. Eng. Asp. 632 (2022) 127750. Crossref

(11). Ðœ. Atamanov, Z. Yelemessova, A. Imangazy, K. Kamunur, et al., J. Phys. Chem. C 123 (2019) 22941‒22948. Crossref

(12). D. Liu, S. Chen, X. Fei, C. Huang, Y. Zhang, Ind. Eng. Chem. Res. 54 (2015) 3556‒3562. Crossref

(13). W.N.R. Wan Isahak, Z.A. Che Ramli, A.H. Lahuri, M.R. Yusop, et al., Adv. Mat. Res. 1087 (2015) 111‒115. Crossref

(14). F. Donat and C.R. Müller, Curr. Opin. Green Sustain. Chem. 36 (2022) 100645. Crossref

(15). H. Pang, A. Sun, H. Xu, G. Xiao, Chem. Eng. J. 425 (2021) 130675. Crossref

(16). H. Sun, C. Wu, B. Shen, X. Zhang, et al., Materials Today Sustainability 1‒2 (2018) 1‒27. Crossref

(17). K.K. Han, Y. Zhou, Y. Chun, J.H. Zhu, J. Hazard. Mater. 203–204 (2012) 341–347. Crossref

(18). B. Dou, Y. Song, Y. Liu, C. Feng, J. Hazard. Mater. 183 (2010) 759–765. Crossref

(19). W.N.R.W. Isahak, Z.A.C. Ramli, M.W. Ismail, K. Ismail, et al., J. CO2 Util. 2 (2013) 8–15. Crossref

(20). C. Boruban, E.N. Esenturk, J. Nanopart. Res. 20 (2018) 59. Crossref

(21). G. Nyssanbayeva, K. Kudaibergenov, L. Sassykova, A. Kerimkulova, et al., J. Chem. Technol. Metall. 55 (2020) 1034–1040.

(22). A.R. Kerimkulova, S. Azat, L. Velasco, Z. A. Mansurov, et al., J. Chem. Technol. Metall. 54 (2019) 578–584.

(23). S.S.R. Dehkordi, Q. Delavar, H.A. Ebrahim, S.S. Partash, Mater. Today Commun. 33 (2022) 104776. Crossref

Downloads

Published

2023-03-20

How to Cite

Ilyin, Y., Kudaibergenov, K., Sharipkhanov, S., Mansurov, Z., Zhaulybayev, A., & Atamanov, M. (2023). Surface Modifications of CuO Doped Carbonaceous Nanosorbents and their CO2 Sorption Properties. Eurasian Chemico-Technological Journal, 25(1), 33–38. https://doi.org/10.18321/ectj1493

Issue

Section

Articles