Recent Achievements and Future Challenges in Nanoscience and Nanotechnology
DOI:
https://doi.org/10.18321/ectj994Abstract
The article presents the investigation results of the formation and synthesis of nanosized materials which were obtained at the Institute of Combustion Problems, many works have been brought to practical use. Investigations of low-temperature soot formation become the basis of nanomaterial synthesis methods, developed at the Institute for Combustion Problems since 1985. Flame can be considered as a chemical reactor to produce target products. The main feature of the processes based on technological combustion is that the target product is formed as a result of the combustion reaction, occurring spontaneously at high temperatures with a high speed without consuming external energy, i.e. due to its own heat. With the development of nanotechnology, new challenges have emerged in the synthesis of nanomaterials under combustion synthesis conditions. Below is a list of works on nanomaterials synthesis carried out at the Institute: complete scheme of soot formation; energy intensive nanocarbon materials; development and study of perovskite photocatalysts for hydrogen evolution; obtaining carbon fibers by the method of electrospinning; obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium; synthesis of nanocarbon sorbents for purification of water from heavy metal ions.
References
(1). Z.A. Mansurov, B.K. Tuleutaev, R.Kh. Salakhov, V.T. Popov, Yu. Korolev. Producing of soot formation in cold methane flame mode. Collection of works on chemistry. Alma-Ata, 1985. Issue 10. P. 158–163 (in Russian).
(2). Z.A. Mansurov, V.I. Pesterev, D.U. Bodykov. The use of low-temperature IR spectroscopy in study of cold flames. Abstracts of the scientific and practical seminar on combustion electrophysics. Karaganda, 1987, p. 103 (in Russian).
(3). Z.A. Mansurov, Combust. Explos. Shock Waves 48 (2012) 561–569. Crossref DOI: https://doi.org/10.1134/S0010508212050073
(4). R.E. Smalley, MRS Bulletin 30 (2005) 412–417. Crossref DOI: https://doi.org/10.1557/mrs2005.124
(5). N. Taniguchi, (1974) On the Basic Concept of Nanotechnology. Proceedings of the International Conference on Production Engineering, Tokyo, 18-23.
(6). A. Samokhvalov, Renew. Sust. Energ. Rev. 72 (2017) 981–1000. Crossref DOI: https://doi.org/10.1016/j.rser.2017.01.024
(7). T. Ye, W. Qi, X. An, H. Liu, J. Qu, Sci Total Environ 688 (2019) 592–599. Crossref DOI: https://doi.org/10.1016/j.scitotenv.2019.06.319
(8). C. Daulbayev, F. Sultanov, B. Bakbolat, O. Daulbayev, Int. J. Hydrogen Energ. 45 (2020) 33325–33342. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2020.09.101
(9). T. Jose, C. Vincent, K.O. Lilly, M.A. Lazar. Materials Today: Proceedings 9 (2019) 21–26. Crossref DOI: https://doi.org/10.1016/j.matpr.2019.02.031
(10). W.K. Wang, W. Zhu, L. Mao, J. Zhang, Z. Zhou, G. Zhao, J. Colloid Interf. Sci. 557 (2019) 227– 235. Crossref DOI: https://doi.org/10.1016/j.jcis.2019.08.088
(11). B. Bakbolat, C. Daulbayev, F. Sultanov, R. Beissenov, A. Umirzakov, A. Mereke, A. Bekbaev, I. Chuprakov, Nanomaterials 10 (2020) 1790. Crossref DOI: https://doi.org/10.3390/nano10091790
(12). C. Collignon, X. Lin, C.W. Rischau, B. Fauqué, K. Behnia, Annu. Rev. Conden. Ma P. 10 (2019) 25–44. Crossref DOI: https://doi.org/10.1146/annurev-conmatphys-031218-013144
(13). B.L. Phoon, C.W. Lai, J.C. Juan, P.-L. Show, G.- T. Pan, Int. J. Hydrogen Energ. 44 (2019) 14316– 14340. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2019.01.166
(14). A. Mishra, A. Mehta, S. Basu, J. Environ. Chem. Eng. 6 (2018) 6088–6107. Crossref DOI: https://doi.org/10.1016/j.jece.2018.09.029
(15). B. Thomas, L.K. Alexander, J. Alloy. Compd. 788 (2019) 257–266. Crossref
(16). M. Ahmadi, M.S. Seyed Dorraji, M.H. Rasoulifard, A.R. Amani-Ghadim, Sep. Purif. Technol. 228 (2019) 115771. Crossref DOI: https://doi.org/10.1016/j.seppur.2019.115771
(17). Y. Wu, T. He, Spectrochim. Acta A 199 (2018) 283–289. Crossref DOI: https://doi.org/10.1016/j.saa.2018.03.078
(18). D. Zhou, P. Zhai, G. Hu, J. Yang, Chem. Phys. Lett. 711 (2018) 77–80. Crossref DOI: https://doi.org/10.1016/j.cplett.2018.09.024
(19). D. Saadetnejad, R. Yıldırım, Int. J. Hydrogen Energ. 43 (2018) 1116–1122. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2017.10.154
(20). L. Hu, X.-W. Yan, X.-J. Zhang, D. Shan, Appl. Surf. Sci. 428 (2018) 819–824. Crossref DOI: https://doi.org/10.1016/j.apsusc.2017.09.216
(21). B.B. Tanganov, Modern high technology 7 (2010) 90–92.
(22). X. Zheng, J. Wen, L. Shi, R. Cheng, Z. Zhang, Desalination 488 (2020) 114523. Crossref DOI: https://doi.org/10.1016/j.desal.2020.114523
(23). J. Safaei, P. Xiong, G. Wang, Materials Today Advances 8 (2020) 100108. Crossref DOI: https://doi.org/10.1016/j.mtadv.2020.100108
(24). H. Saleem, L. Trabzon, A. Kilic, S.J. Zaidi, Desalination 478 (2020) 114178. Crossref DOI: https://doi.org/10.1016/j.desal.2019.114178
(25). The United Nations World Water Development Report 2014: Water and Energy. Printed by UNESCO CLD, Paris. ePub ISBN 978-92-3- 904259-3
(26). M. Elimelech, W.A. Phillip, Science 333 (2011) 712–717. Crossref DOI: https://doi.org/10.1126/science.1200488
(27). S. Fang, W. Tu, L. Mu, Z. Sun, Q. Hu, Y. Yang, Renew. Sust. Energ. Rev. 113 (2019) 109268. Crossref DOI: https://doi.org/10.1016/j.rser.2019.109268
(28). Z. Yang, X.-H. Ma, C.Y. Tang, Desalination 434 (2018) 37–59. Crossref DOI: https://doi.org/10.1016/j.desal.2017.11.046
(29). Y.H. Teow, A.W. Mohammad, Desalination 451 (2019) 2–17. Crossref DOI: https://doi.org/10.1016/j.desal.2017.11.041
(30). Z. Li, A. Siddiqi, L.D. Anadon, V. Narayanamurti, Renew. Sust. Energ. Rev. 82 (2018) 3833–3847. Crossref DOI: https://doi.org/10.1016/j.rser.2017.10.087
(31). A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Castelletto, S. Mikhalovsky, npj Clean Water 1 (2018) 5. Crossref DOI: https://doi.org/10.1038/s41545-018-0004-z
(32). X. Li, B. Zhu, J. Zhu, Carbon 146 (2019) 320– 328. Crossref DOI: https://doi.org/10.1016/j.carbon.2019.02.007
(33). A.S. Kazemi, S.M. Hosseini, Y. Abdi, Desalination 451 (2019) 160–171. Crossref DOI: https://doi.org/10.1016/j.desal.2017.12.050
(34). J. Farahbakhsh, M. Delnavaz, V. Vatanpour, J. Memb. Sci. 581 (2019) 123–138. Crossref DOI: https://doi.org/10.1016/j.memsci.2019.03.050
(35). I.W. Azelee, P.S. Goh, W.J. Lau, A.F. Ismail, J. Clean. Prod. 181 (2018) 517–526. Crossref DOI: https://doi.org/10.1016/j.jclepro.2018.01.212
(36). Q. Li, D. Yang, J. Shi, X. Xu, S. Yan, Q. Liu, Desalination 379 (2016) 164–171. Crossref DOI: https://doi.org/10.1016/j.desal.2015.11.008
(37). S. Hadadpour, I. Tavakol, Z. Shabani, T. Mohammadi, M.A. Tofighy, S. Sahebi, J. Environ. Chem. Eng. 9 (2021) 104880. Crossref DOI: https://doi.org/10.1016/j.jece.2020.104880
(38). J. Deng, L. Xu, J. Liu, J. Peng, Z. Han, Z. Shen, S. Guo, Polym. Degrad. Stabil. 182 (2020) 109419. Crossref DOI: https://doi.org/10.1016/j.polymdegradstab.2020.109419
(39). J. Zhang, V.S. Chevali, H. Wang, C.-H. Wang, Compos. Part B - Eng. 193 (2020) 108053. Crossref DOI: https://doi.org/10.1016/j.compositesb.2020.108053
(40). J. Du, H. Zhang, Y. Geng, W. Ming, W. He, J. Ma, Y. Cao, X. Li, K. Liu, Ceram. Int. 45 (2019) 18155–18166. Crossref DOI: https://doi.org/10.1016/j.ceramint.2019.06.112
(41). S.-L. Bee, Z.A.A. Hamid, Ceram. Int. 46 (2020) 17149–17175. Crossref DOI: https://doi.org/10.1016/j.ceramint.2020.04.103
(42). S. Mondal, U. Pal, J. Drug Deliv. Sci. Tec. 53 (2019) 101131. Crossref DOI: https://doi.org/10.1016/j.jddst.2019.101131
(43). M. Farokhi, F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, D.L. Kaplan, Biotechnol. Adv. 36 (2018) 68–91. Crossref DOI: https://doi.org/10.1016/j.biotechadv.2017.10.001
(44). M.N. Hassan, M.M. Mahmoud, A.A. El-Fattah, S. Kandil, Ceram. Int. 42 (2016) 3725–3744. Crossref DOI: https://doi.org/10.1016/j.ceramint.2015.11.044
(45). Md. Minhajul Islam, Md. Shahruzzaman, Shanta Biswas, Md. Nurus Sakib, Taslim Ur Rashid, Bioactive Materials 5 (2020) 164–183. Crossref DOI: https://doi.org/10.1016/j.bioactmat.2020.01.012
(46). Y.G. Lim, H.J. Kim, Jin Won Kim, Kyeongsoon Park, J. Ind. Eng. Chem. 89 (2020) 442–447. Crossref DOI: https://doi.org/10.1016/j.jiec.2020.06.018
(47). Ch. Daulbayev, Z. Mansurov, G. Mitchell, A. Zakhidov, Eurasian Chem.-Tech. J. 20 (2018) 119–124. Crossref DOI: https://doi.org/10.18321/ectj690
(48). S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, Molecules 25 (2019) 112. Crossref DOI: https://doi.org/10.3390/molecules25010112
(49). Soot Formation in Combustion. Ed. H. Bockhorn, Heidelberg, Springer, 1994. Р. 596. Crossref DOI: https://doi.org/10.1007/978-3-642-85167-4
(50). Z.A. Mansurov. Soot formation. Almaty: Kazakh University. 2015, 167 p.
(51). Z.A. Mansurov, Eurasian Chem.-Technol. J. 20 (2018) 277–281. Crossref DOI: https://doi.org/10.18321/ectj760
(52). Z.A. Mansurov, M.K. Atamanov, Zh. Elemesova, B.T. Lesbaev, M.N. Chikradze, Combust. Explos. Shock Waves 55 (2019) 402– 408. Crossref DOI: https://doi.org/10.1134/S0010508219040051
(53). M.A. Seitzhanova, D.I. Chenchik, S.K. Tanirbergenova, Z.А. Mansurov, Combustion and Plasmachemistry [Gorenie i Plazmohimija]15 (2017) 248–253 (in Russian).
(54). J.M. Jandosov, N.V. Shikina, M.A. Bijsenbayev, M.E. Shamalov, Z.R. Ismagilov, Z.A. Mansurov, Eurasian Chem.-Technol. J. 11 (2009) 245–252. Crossref DOI: https://doi.org/10.18321/ectj287
(55). Umber Kalsoom, M. Shahid Rafique, Shamaila Shahzadi, Khizra Fatima, Rabia Shaheen, Mater. Sci.-Poland 35 (2017) 687–693. Crossref DOI: https://doi.org/10.1515/msp-2017-0099
(56). M.K. Atamanov, R. Amrousse, K. Hori, B.Ya. Kolesnikov, Z.A. Mansurov, Combust. Explos. Shock. Waves 54 (2018) 72–81. Crossref DOI: https://doi.org/10.1134/S0010508218030085
(57). F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, M. Bigaj, Z. Mansurov, K. Kuterbekov, K. Bekmyrza, Chem. Phys. Lett. 737 (2019) 136821. Crossref DOI: https://doi.org/10.1016/j.cplett.2019.136821
(58). P.K. Roy, J. Bera, Mater. Res. Bull. 40 (2005) 599– 604. Crossref DOI: https://doi.org/10.1016/j.materresbull.2005.01.010
(59). F. Sultanov, C. Daulbayev, S. Azat, K. Kuterbekov, K. Bekmyrza, B. Bakbolat, M. Bigaj, Z. Mansurov, Nanomaterials 10 (2020) 1734. Crossref DOI: https://doi.org/10.3390/nano10091734
(60). R.E. Beissenov, A.L. Mereke, A.G. Umirzakov, Z.A. Mansurov, B.A. Rakhmetov, Y.Y. Beisenova, A.A. Shaikenova, D.A. Muratov, Mat. Sci. Semicon. Proc. 121 (2021) 105360. Crossref DOI: https://doi.org/10.1016/j.mssp.2020.105360
(61). D.B. Lima, M.A. Araújo de Souza, G. Goetten de Lima, E.P.F. Souto, H.M.L. Oliveira, M.V. Lia Fook, M.J. Cavalcanti de Sá, Carbohyd. Polym. 245 (2020) 116575. Crossref DOI: https://doi.org/10.1016/j.carbpol.2020.116575
(62). Ch. Daulbayev, Z. Mansurov, F. Sultanov, M. Shams, A. Umirzakov, S. Serovajsky, Eurasian Chem.-Technol. J. 22 (2020) 149–156. Crossref DOI: https://doi.org/10.18321/ectj974
(63). E.A. Botchwey, S.R. Pollack, E.M. Levine, E.D. Johnston, C.T. Laurencin, J. Biomed. Mater. Res. 69A (2004) 205–215. Crossref DOI: https://doi.org/10.1002/jbm.a.10163
(64). L.V. Gonzalez Gil, H. Singh, J. de S. da Silva, D.P. dos Santos, D.T. Covas, K. Swiech, C.A. Torres Suazo, Biochem. Eng. J. 162 (2020) 107710. Crossref DOI: https://doi.org/10.1016/j.bej.2020.107710
(65). B.S. Borys, A. Le, E.L. Roberts, T. Dang, L. Rohani, C.Y.-M. Hsu, A.A. Wyma, D.E. Rancourt, I.D. Gates, M.S. Kallos, J. Biotechnol. 304 (2019) 16–27. Crossref DOI: https://doi.org/10.1016/j.jbiotec.2019.08.002