Recent Achievements and Future Challenges in Nanoscience and Nanotechnology
DOI:
https://doi.org/10.18321/ectj994Abstract
The article presents the investigation results of the formation and synthesis of nanosized materials which were obtained at the Institute of Combustion Problems, many works have been brought to practical use. Investigations of low-temperature soot formation become the basis of nanomaterial synthesis methods, developed at the Institute for Combustion Problems since 1985. Flame can be considered as a chemical reactor to produce target products. The main feature of the processes based on technological combustion is that the target product is formed as a result of the combustion reaction, occurring spontaneously at high temperatures with a high speed without consuming external energy, i.e. due to its own heat. With the development of nanotechnology, new challenges have emerged in the synthesis of nanomaterials under combustion synthesis conditions. Below is a list of works on nanomaterials synthesis carried out at the Institute: complete scheme of soot formation; energy intensive nanocarbon materials; development and study of perovskite photocatalysts for hydrogen evolution; obtaining carbon fibers by the method of electrospinning; obtaining of biologically soluble membranes based on polymeric nanofibres and hydroxyapatite of calcium; synthesis of nanocarbon sorbents for purification of water from heavy metal ions.
References
(1). Z.A. Mansurov, B.K. Tuleutaev, R.Kh. Salakhov, V.T. Popov, Yu. Korolev. Producing of soot formation in cold methane flame mode. Collection of works on chemistry. Alma-Ata, 1985. Issue 10. P. 158–163 (in Russian).
(2). Z.A. Mansurov, V.I. Pesterev, D.U. Bodykov. The use of low-temperature IR spectroscopy in study of cold flames. Abstracts of the scientific and practical seminar on combustion electrophysics. Karaganda, 1987, p. 103 (in Russian).
(3). Z.A. Mansurov, Combust. Explos. Shock Waves 48 (2012) 561–569. Crossref
(4). R.E. Smalley, MRS Bulletin 30 (2005) 412–417. Crossref
(5). N. Taniguchi, (1974) On the Basic Concept of Nanotechnology. Proceedings of the International Conference on Production Engineering, Tokyo, 18-23.
(6). A. Samokhvalov, Renew. Sust. Energ. Rev. 72 (2017) 981–1000. Crossref
(7). T. Ye, W. Qi, X. An, H. Liu, J. Qu, Sci Total Environ 688 (2019) 592–599. Crossref
(8). C. Daulbayev, F. Sultanov, B. Bakbolat, O. Daulbayev, Int. J. Hydrogen Energ. 45 (2020) 33325–33342. Crossref
(9). T. Jose, C. Vincent, K.O. Lilly, M.A. Lazar. Materials Today: Proceedings 9 (2019) 21–26. Crossref
(10). W.K. Wang, W. Zhu, L. Mao, J. Zhang, Z. Zhou, G. Zhao, J. Colloid Interf. Sci. 557 (2019) 227– 235. Crossref
(11). B. Bakbolat, C. Daulbayev, F. Sultanov, R. Beissenov, A. Umirzakov, A. Mereke, A. Bekbaev, I. Chuprakov, Nanomaterials 10 (2020) 1790. Crossref
(12). C. Collignon, X. Lin, C.W. Rischau, B. Fauqué, K. Behnia, Annu. Rev. Conden. Ma P. 10 (2019) 25–44. Crossref
(13). B.L. Phoon, C.W. Lai, J.C. Juan, P.-L. Show, G.- T. Pan, Int. J. Hydrogen Energ. 44 (2019) 14316– 14340. Crossref
(14). A. Mishra, A. Mehta, S. Basu, J. Environ. Chem. Eng. 6 (2018) 6088–6107. Crossref
(15). B. Thomas, L.K. Alexander, J. Alloy. Compd. 788 (2019) 257–266. Crossref
(16). M. Ahmadi, M.S. Seyed Dorraji, M.H. Rasoulifard, A.R. Amani-Ghadim, Sep. Purif. Technol. 228 (2019) 115771. Crossref
(17). Y. Wu, T. He, Spectrochim. Acta A 199 (2018) 283–289. Crossref
(18). D. Zhou, P. Zhai, G. Hu, J. Yang, Chem. Phys. Lett. 711 (2018) 77–80. Crossref
(19). D. Saadetnejad, R. Yıldırım, Int. J. Hydrogen Energ. 43 (2018) 1116–1122. Crossref
(20). L. Hu, X.-W. Yan, X.-J. Zhang, D. Shan, Appl. Surf. Sci. 428 (2018) 819–824. Crossref
(21). B.B. Tanganov, Modern high technology 7 (2010) 90–92.
(22). X. Zheng, J. Wen, L. Shi, R. Cheng, Z. Zhang, Desalination 488 (2020) 114523. Crossref
(23). J. Safaei, P. Xiong, G. Wang, Materials Today Advances 8 (2020) 100108. Crossref
(24). H. Saleem, L. Trabzon, A. Kilic, S.J. Zaidi, Desalination 478 (2020) 114178. Crossref
(25). The United Nations World Water Development Report 2014: Water and Energy. Printed by UNESCO CLD, Paris. ePub ISBN 978-92-3- 904259-3
(26). M. Elimelech, W.A. Phillip, Science 333 (2011) 712–717. Crossref
(27). S. Fang, W. Tu, L. Mu, Z. Sun, Q. Hu, Y. Yang, Renew. Sust. Energ. Rev. 113 (2019) 109268. Crossref
(28). Z. Yang, X.-H. Ma, C.Y. Tang, Desalination 434 (2018) 37–59. Crossref
(29). Y.H. Teow, A.W. Mohammad, Desalination 451 (2019) 2–17. Crossref
(30). Z. Li, A. Siddiqi, L.D. Anadon, V. Narayanamurti, Renew. Sust. Energ. Rev. 82 (2018) 3833–3847. Crossref
(31). A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Castelletto, S. Mikhalovsky, npj Clean Water 1 (2018) 5. Crossref
(32). X. Li, B. Zhu, J. Zhu, Carbon 146 (2019) 320– 328. Crossref
(33). A.S. Kazemi, S.M. Hosseini, Y. Abdi, Desalination 451 (2019) 160–171. Crossref
(34). J. Farahbakhsh, M. Delnavaz, V. Vatanpour, J. Memb. Sci. 581 (2019) 123–138. Crossref
(35). I.W. Azelee, P.S. Goh, W.J. Lau, A.F. Ismail, J. Clean. Prod. 181 (2018) 517–526. Crossref
(36). Q. Li, D. Yang, J. Shi, X. Xu, S. Yan, Q. Liu, Desalination 379 (2016) 164–171. Crossref
(37). S. Hadadpour, I. Tavakol, Z. Shabani, T. Mohammadi, M.A. Tofighy, S. Sahebi, J. Environ. Chem. Eng. 9 (2021) 104880. Crossref
(38). J. Deng, L. Xu, J. Liu, J. Peng, Z. Han, Z. Shen, S. Guo, Polym. Degrad. Stabil. 182 (2020) 109419. Crossref
(39). J. Zhang, V.S. Chevali, H. Wang, C.-H. Wang, Compos. Part B - Eng. 193 (2020) 108053. Crossref
(40). J. Du, H. Zhang, Y. Geng, W. Ming, W. He, J. Ma, Y. Cao, X. Li, K. Liu, Ceram. Int. 45 (2019) 18155–18166. Crossref
(41). S.-L. Bee, Z.A.A. Hamid, Ceram. Int. 46 (2020) 17149–17175. Crossref
(42). S. Mondal, U. Pal, J. Drug Deliv. Sci. Tec. 53 (2019) 101131. Crossref
(43). M. Farokhi, F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, D.L. Kaplan, Biotechnol. Adv. 36 (2018) 68–91. Crossref
(44). M.N. Hassan, M.M. Mahmoud, A.A. El-Fattah, S. Kandil, Ceram. Int. 42 (2016) 3725–3744. Crossref
(45). Md. Minhajul Islam, Md. Shahruzzaman, Shanta Biswas, Md. Nurus Sakib, Taslim Ur Rashid, Bioactive Materials 5 (2020) 164–183. Crossref
(46). Y.G. Lim, H.J. Kim, Jin Won Kim, Kyeongsoon Park, J. Ind. Eng. Chem. 89 (2020) 442–447. Crossref
(47). Ch. Daulbayev, Z. Mansurov, G. Mitchell, A. Zakhidov, Eurasian Chem.-Tech. J. 20 (2018) 119–124. Crossref
(48). S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, Molecules 25 (2019) 112. Crossref
(49). Soot Formation in Combustion. Ed. H. Bockhorn, Heidelberg, Springer, 1994. Р. 596. Crossref
(50). Z.A. Mansurov. Soot formation. Almaty: Kazakh University. 2015, 167 p.
(51). Z.A. Mansurov, Eurasian Chem.-Technol. J. 20 (2018) 277–281. Crossref
(52). Z.A. Mansurov, M.K. Atamanov, Zh. Elemesova, B.T. Lesbaev, M.N. Chikradze, Combust. Explos. Shock Waves 55 (2019) 402– 408. Crossref
(53). M.A. Seitzhanova, D.I. Chenchik, S.K. Tanirbergenova, Z.А. Mansurov, Combustion and Plasmachemistry [Gorenie i Plazmohimija]15 (2017) 248–253 (in Russian).
(54). J.M. Jandosov, N.V. Shikina, M.A. Bijsenbayev, M.E. Shamalov, Z.R. Ismagilov, Z.A. Mansurov, Eurasian Chem.-Technol. J. 11 (2009) 245–252. Crossref
(55). Umber Kalsoom, M. Shahid Rafique, Shamaila Shahzadi, Khizra Fatima, Rabia Shaheen, Mater. Sci.-Poland 35 (2017) 687–693. Crossref
(56). M.K. Atamanov, R. Amrousse, K. Hori, B.Ya. Kolesnikov, Z.A. Mansurov, Combust. Explos. Shock. Waves 54 (2018) 72–81. Crossref
(57). F. Sultanov, C. Daulbayev, B. Bakbolat, O. Daulbayev, M. Bigaj, Z. Mansurov, K. Kuterbekov, K. Bekmyrza, Chem. Phys. Lett. 737 (2019) 136821. Crossref
(58). P.K. Roy, J. Bera, Mater. Res. Bull. 40 (2005) 599– 604. Crossref
(59). F. Sultanov, C. Daulbayev, S. Azat, K. Kuterbekov, K. Bekmyrza, B. Bakbolat, M. Bigaj, Z. Mansurov, Nanomaterials 10 (2020) 1734. Crossref
(60). R.E. Beissenov, A.L. Mereke, A.G. Umirzakov, Z.A. Mansurov, B.A. Rakhmetov, Y.Y. Beisenova, A.A. Shaikenova, D.A. Muratov, Mat. Sci. Semicon. Proc. 121 (2021) 105360. Crossref
(61). D.B. Lima, M.A. Araújo de Souza, G. Goetten de Lima, E.P.F. Souto, H.M.L. Oliveira, M.V. Lia Fook, M.J. Cavalcanti de Sá, Carbohyd. Polym. 245 (2020) 116575. Crossref
(62). Ch. Daulbayev, Z. Mansurov, F. Sultanov, M. Shams, A. Umirzakov, S. Serovajsky, Eurasian Chem.-Technol. J. 22 (2020) 149–156. Crossref
(63). E.A. Botchwey, S.R. Pollack, E.M. Levine, E.D. Johnston, C.T. Laurencin, J. Biomed. Mater. Res. 69A (2004) 205–215. Crossref
(64). L.V. Gonzalez Gil, H. Singh, J. de S. da Silva, D.P. dos Santos, D.T. Covas, K. Swiech, C.A. Torres Suazo, Biochem. Eng. J. 162 (2020) 107710. Crossref
(65). B.S. Borys, A. Le, E.L. Roberts, T. Dang, L. Rohani, C.Y.-M. Hsu, A.A. Wyma, D.E. Rancourt, I.D. Gates, M.S. Kallos, J. Biotechnol. 304 (2019) 16–27. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.