Carbon/NiO Compositional Fibers
DOI:
https://doi.org/10.18321/ectj1319Keywords:
Nickel oxide particles, Composite fibers, Electrospinning, Coal tar, Ectivated carbonAbstract
This article presents the results of the synthesis of carbon-NiO composite fibers. Fibers doped with NiO particles are of practical interest for applications in sensors, energy storage systems, photocatalysts, etc. Four-component initial fibers based on polyacrylonitrile (PAN), activated carbon (AC), coal tar pitch (CTP), and NiO particles were obtained. CTP was obtained by thermal treatment of coal tar, AC by carbonization of apricot kernels, NiO by solution combustion synthesis. PAN, CTP, and AC are a source of carbon, but each of them plays a specific role. PAN is the basis of carbon fibers and a fiber-forming material, CTP is a technogenic waste added to replace polymer particles, AC is an additive that could increase the carbon content and the porosity of the final fibers. The fibers were obtained using the electrospinning method, which makes it possible to use complex suspensions and obtain fibers of various diameters. PAN:CTP:AC:NiO fibers were obtained. Next, the processes of stabilization and carbonization of the fibers were carried out. The fibers at each stage were examined by scanning electron microscopy and EDAX. The result of the synthesis was carbon/NiO fibers with a diameter of 100‒300 nm. The resulting fibers are promising for practical applications due to the one-dimensional structure of the fibers and better adhesion between the fiber and NiO particles.
References
(1). Z. Mansurov, Eurasian Chem.-Technol. J. 22 (2020) 241‒253. Crossref
(2). V. Pavlenko, S. Khosravi H, S. Żółtowska, A.B. Haruna, M. Zahid, Z. Mansurov, Z. Supiyeva, A. Galal, K.I. Ozoemena, Q. Abbas, T. Jesionowski, Mater. Sci. Eng.: R: Rep. 149 (2022) 100682. Crossref
(3). J.-P. Cao, S. He, Y. Wu, X.-Y. Zhao, X-Y. Wei, T. Takarada, Int. J. Electrochem. Sci. 12 (2017) 2704–2718. Crossref
(4). Y. Gong, M. Zhang, G. Cao, RSC Adv. 5 (2015) 26521–26529. Crossref
(5). A. Sankar, S. Valli Chitra, M. Jayashree, M. Parthibavarman, T. Amirthavarshini, Diam. Relat. Mater. 122 (2022) 108804. Crossref
(6). Y. Zhang, Y. Shen, X. Xie, W. Du, L. Kang, Y. Wang, X. Sun, Z. Li, B. Wang, Mater. Des. 196 (2020) 109111. Crossref
(7). J. Zhang, A. Tahmasebi, J. E. Omoriyekomwan, J. Yu, Fuel Process. Technol. 213 (2021) 106714. Crossref
(8). Q. Han, M. Shi, Z. Han, W. Zhang, Y. Li, X. Zhang, Y. Sheng, Ionics 26 (2020) 5935–5940. Crossref
(9). A.P. Kozlov, I.Yu. Zykov, Yu.N. Dudnikova, Fedorova , Z.R. Ismagilov, Bulletin KuzSTU 4 (2017) 170‒175 (in Russ.).
(10). J. Jandosov, Z.A. Mansurov, M.A. Biisenbayev, A.R. Kerimkulova, Z.R. Ismagilov, N.V. Shikina, I.Z. Ismagilov, I.P. Andrievskaya, Eurasian Chem.-Technol. J. 13 (2011) 105–113. Crossref
(11). M. Yeleuov, C. Daulbayev, A. Taurbekov, A. Abdisattar, R. Ebrahim, S. Kumekov, N. Prikhodko, B. Lesbayev, Karakozov Batyrzhan, Diam. Relat. Mater. 119 (2021) 108560. Crossref
(12). M. Yeleuov, C. Seidl, T. Temirgaliyeva, A. Taurbekov, N. Prikhodko, B. Lesbayev, F. Sultanov, C. Daulbayev, S. Kumekov, Energies 13 (2020) 4943. Crossref
(13). M. Olán Ramos, E. Del Angel Meraz, J.M. Rojo, D.E. Pacheco-Catalán, M.A. Pantoja Castro, R.S. Mora Ortiz, J. Mater. Sci: Mater. Electron. 32 (2021) 4872–4884. Crossref
(14). Y. Zakharov, G. Simenyuk, E. Kachina, V. Pugachev, V. Dodonov, D. Yakubik, T. Trosnyanskaya Z. Ismagilov, Energy Technol. 9 (2021) 2100449. Crossref
(15). X.X. Fan, M.R. Li, L.T. Xie, Y.J. Xu, W.M. He, X. Huang, M.J. Zeng, P. Dai, Key Eng. Mater. 842 (2020) 231–235. Crossref
(16). A. Khalil, J.J. Kim, H.L. Tuller, G.C. Rutledge, R. Hashaikeh, Sens. Actuators B Chem. 227 (227) 54–64. Crossref
(17). V.D. Silva, R.A. Raimundo, T.A. Simões, F.J.A. Loureiro, D.P. Fagg, M.A. Morales, D.A. Macedo, E.S. Medeiros, Int. J. Hydrog. Energy 46 (2021) 3798–3810. Crossref
(18). T.J. Macdonald, J. Xu, S. Elmas, Y.J. Mange, W.M. Skinner, H. Xu, T. Nann, Nanomaterials 4 (2014) 256–266. Crossref
(19). C. Daulbayev, B Kaidar, F. Sultanov, B. Bakbolat, G. Smagulova, Z. Mansurov, S. Afr. J. Chem. Eng. 38 (2021) 9–20. Crossref
(20). B.B. Kaidar, G.T. Smagulova, M.T. Artykbayeva, Z.A. Mansurov, Combustion and Plasma Chemistry 15 (2017) 287–298.
(21). Z. Supiyeva, K. Avchukir, V. Pavlenko, M. Yeleuov, A. Taurbekov, G. Smagulova, Z. Mansurov, Mater. Today: Proc. 25 (2020) 33– 38. Crossref
(22). B.B. Kaidar, G.T. Smagulova, A.A. Imash, S. Zhaparkul, Z.A. Mansurov, Combustion and Plasma Chemistry 19 (2021) 159–170. Crossref
(23). A. Imangazy, G. Smagulova, B. Kaidar, Z. Mansurov, A. Kerimkulova, K. Umbetkaliev, A. Zakhidov, P. Vorobyev, T. Jumadilov, Chem. Chem. Technol. 15 (2021) 403–407. Crossref
(24). U. Kalsoom, M. Shahid Rafique, S. Shahzadi, K. Fatima, R. ShaheeN, Mater. Sci.-Pol. 35 (2017) 687–693. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.