Carbon/NiO Compositional Fibers

Authors

  • Z.A. Mansurov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan
  • G.T. Smagulova al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan
  • A.A. Imash Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan
  • A.T. Taurbekov al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan
  • B. Elouadi La Rochelle Université, 23 ave. Albert Einstein, BP 33060 - 17031, La Rochelle, France
  • B.B. Kaidar al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, Kazakhstan; Institute of Combustion Problems, 172 Bogenbai Batyr str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1319

Keywords:

Nickel oxide particles, Composite fibers, Electrospinning, Coal tar, Ectivated carbon

Abstract

This article presents the results of the synthesis of carbon-NiO composite fibers. Fibers doped with NiO particles are of practical interest for applications in sensors, energy storage systems, photocatalysts, etc. Four-component initial fibers based on polyacrylonitrile (PAN), activated carbon (AC), coal tar pitch (CTP), and NiO particles were obtained. CTP was obtained by thermal treatment of coal tar, AC by carbonization of apricot kernels, NiO by solution combustion synthesis. PAN, CTP, and AC are a source of carbon, but each of them plays a specific role. PAN is the basis of carbon fibers and a fiber-forming material, CTP is a technogenic waste added to replace polymer particles, AC is an additive that could increase the carbon content and the porosity of the final fibers. The fibers were obtained using the electrospinning method, which makes it possible to use complex suspensions and obtain fibers of various diameters. PAN:CTP:AC:NiO fibers were obtained. Next, the processes of stabilization and carbonization of the fibers were carried out. The fibers at each stage were examined by scanning electron microscopy and EDAX. The result of the synthesis was carbon/NiO fibers with a diameter of 100‒300 nm. The resulting fibers are promising for practical applications due to the one-dimensional structure of the fibers and better adhesion between the fiber and NiO particles.

 

References

(1). Z. Mansurov, Eurasian Chem.-Technol. J. 22 (2020) 241‒253. Crossref

(2). V. Pavlenko, S. Khosravi H, S. Żółtowska, A.B. Haruna, M. Zahid, Z. Mansurov, Z. Supiyeva, A. Galal, K.I. Ozoemena, Q. Abbas, T. Jesionowski, Mater. Sci. Eng.: R: Rep. 149 (2022) 100682. Crossref

(3). J.-P. Cao, S. He, Y. Wu, X.-Y. Zhao, X-Y. Wei, T. Takarada, Int. J. Electrochem. Sci. 12 (2017) 2704–2718. Crossref

(4). Y. Gong, M. Zhang, G. Cao, RSC Adv. 5 (2015) 26521–26529. Crossref

(5). A. Sankar, S. Valli Chitra, M. Jayashree, M. Parthibavarman, T. Amirthavarshini, Diam. Relat. Mater. 122 (2022) 108804. Crossref

(6). Y. Zhang, Y. Shen, X. Xie, W. Du, L. Kang, Y. Wang, X. Sun, Z. Li, B. Wang, Mater. Des. 196 (2020) 109111. Crossref

(7). J. Zhang, A. Tahmasebi, J. E. Omoriyekomwan, J. Yu, Fuel Process. Technol. 213 (2021) 106714. Crossref

(8). Q. Han, M. Shi, Z. Han, W. Zhang, Y. Li, X. Zhang, Y. Sheng, Ionics 26 (2020) 5935–5940. Crossref

(9). A.P. Kozlov, I.Yu. Zykov, Yu.N. Dudnikova, Fedorova , Z.R. Ismagilov, Bulletin KuzSTU 4 (2017) 170‒175 (in Russ.).

(10). J. Jandosov, Z.A. Mansurov, M.A. Biisenbayev, A.R. Kerimkulova, Z.R. Ismagilov, N.V. Shikina, I.Z. Ismagilov, I.P. Andrievskaya, Eurasian Chem.-Technol. J. 13 (2011) 105–113. Crossref

(11). M. Yeleuov, C. Daulbayev, A. Taurbekov, A. Abdisattar, R. Ebrahim, S. Kumekov, N. Prikhodko, B. Lesbayev, Karakozov Batyrzhan, Diam. Relat. Mater. 119 (2021) 108560. Crossref

(12). M. Yeleuov, C. Seidl, T. Temirgaliyeva, A. Taurbekov, N. Prikhodko, B. Lesbayev, F. Sultanov, C. Daulbayev, S. Kumekov, Energies 13 (2020) 4943. Crossref

(13). M. Olán Ramos, E. Del Angel Meraz, J.M. Rojo, D.E. Pacheco-Catalán, M.A. Pantoja Castro, R.S. Mora Ortiz, J. Mater. Sci: Mater. Electron. 32 (2021) 4872–4884. Crossref

(14). Y. Zakharov, G. Simenyuk, E. Kachina, V. Pugachev, V. Dodonov, D. Yakubik, T. Trosnyanskaya Z. Ismagilov, Energy Technol. 9 (2021) 2100449. Crossref

(15). X.X. Fan, M.R. Li, L.T. Xie, Y.J. Xu, W.M. He, X. Huang, M.J. Zeng, P. Dai, Key Eng. Mater. 842 (2020) 231–235. Crossref

(16). A. Khalil, J.J. Kim, H.L. Tuller, G.C. Rutledge, R. Hashaikeh, Sens. Actuators B Chem. 227 (227) 54–64. Crossref

(17). V.D. Silva, R.A. Raimundo, T.A. Simões, F.J.A. Loureiro, D.P. Fagg, M.A. Morales, D.A. Macedo, E.S. Medeiros, Int. J. Hydrog. Energy 46 (2021) 3798–3810. Crossref

(18). T.J. Macdonald, J. Xu, S. Elmas, Y.J. Mange, W.M. Skinner, H. Xu, T. Nann, Nanomaterials 4 (2014) 256–266. Crossref

(19). C. Daulbayev, B Kaidar, F. Sultanov, B. Bakbolat, G. Smagulova, Z. Mansurov, S. Afr. J. Chem. Eng. 38 (2021) 9–20. Crossref

(20). B.B. Kaidar, G.T. Smagulova, M.T. Artykbayeva, Z.A. Mansurov, Combustion and Plasma Chemistry 15 (2017) 287–298.

(21). Z. Supiyeva, K. Avchukir, V. Pavlenko, M. Yeleuov, A. Taurbekov, G. Smagulova, Z. Mansurov, Mater. Today: Proc. 25 (2020) 33– 38. Crossref

(22). B.B. Kaidar, G.T. Smagulova, A.A. Imash, S. Zhaparkul, Z.A. Mansurov, Combustion and Plasma Chemistry 19 (2021) 159–170. Crossref

(23). A. Imangazy, G. Smagulova, B. Kaidar, Z. Mansurov, A. Kerimkulova, K. Umbetkaliev, A. Zakhidov, P. Vorobyev, T. Jumadilov, Chem. Chem. Technol. 15 (2021) 403–407. Crossref

(24). U. Kalsoom, M. Shahid Rafique, S. Shahzadi, K. Fatima, R. ShaheeN, Mater. Sci.-Pol. 35 (2017) 687–693. Crossref

Downloads

Published

2022-07-25

How to Cite

Mansurov, Z., Smagulova, G., Imash, A., Taurbekov, A., Elouadi, B., & Kaidar, B. (2022). Carbon/NiO Compositional Fibers. Eurasian Chemico-Technological Journal, 24(2), 59–67. https://doi.org/10.18321/ectj1319

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>