Single Crystal X-Ray Structural Investigation of Alluaudite Related Monophosphate Na2FeMn2(PO4)3

Authors

  • N. Dridi Laboratoire de Chimie du Solide Appliquée, Université Mohammed V-Agdal, avenue Ibn Batouta, B.P. 1014, Rabat, Morocco
  • El-H. Arbib Laboratoire de Physico-chimie des Matériaux vitreux et cristallisés, Equipe de Physico-Chimie des Matériaux Inorganiques, Université Ibn Tofaïl, Département de Chimie, Kénitra, Morocco
  • El H. Karni Laboratoire de Chimie du Solide Appliquée, Université Mohammed V-Agdal, avenue Ibn Batouta, B.P. 1014, Rabat, Morocco
  • F. Capitelli Istituto di Cristallografia (IC-CNR), sezione di Bari, Via Amendola 122/o,70126 Bari, Italy
  • B. Elouadi Laboratoire d’Elaboration Analyse Chimique et Ingénieurie des Matériaux (LEACIM), Université de la Rochelle, avenue Miche Crépeau, 17042 La Rochelle, France

DOI:

https://doi.org/10.18321/ectj47

Abstract

The compound Na2FeMn2(PO4)3 has been successfully isolated with the alluaudite structural type. Accurate single crystal X-ray diffraction has allowed solving the structure with reliability factors of R1 and Rw equal to 0.0322 and 0.0790 respectively. It was found that the symmetry is monoclinic with a space group of C2/c and lattice parameters: a = 12.180(2) Å, b = 12.660(2) Å, c = 6.500(2) Å, B = 114.528(3)(°), unit cell volume = 911.8(3) Å3, Z = 8 and dcal.=3.618 g.cm-3. Three-dimensional network is formed by the [MnO6] octahedra linked in pairs to form Mn-based octahedral dimers: ([Mn2O10]). Each dimer shares six vertices with six tetrahedra [P(2)O4] to form sheets within the plane (100). The latter are connected by tetrahedra [P(1)O4] delimiting cages and tunnels which house either Fe3+ or Na+ cations. Each [FeO6] octahedron is linked to two [Mn2O10] dimers belonging to two adjacent sheets to form mixed Fe-Mn chains of the type: - Fe3+ - Mn2+ - Mn2+ - Fe3+ - Mn2+ - Mn2+ - Fe3+ - ..., running along the direction [101].

References

1. D. J. Fischer; Amer. Mineral. 40, 1100 (1955).

2. P. B. Moore; Amer. Mineral. 56, 1955 (1971).

3. M. Rondeux, “Etude expérimentale de la cristallochimie et de la stabilité des phosphates à structure fillowite”; Doctorat en sciences; Liège University, Belgium (2011-04-08).

4. T. Araki and P. B. Moore; Amer.Mineral., 66, 827 (1981).

5. E. S. Grew, T. Armbruster, O. M. Martin G. Yates and Christopher J. Carson; Amer. Mineral., 91(8-9), 1412 (2006).

6. M. Kacimi, M. Ziyad and F. Hatert; Mat. Res. Bull. 40(4), 682 (2005).

7. R. P. Hermann, F. Hatert, A-M. Fransolet, G. J. Long and F. Grandjean; Solid State Sciences, 4(4), 507 (2002).

8. F. Hatert, D. Antenucci, A-M. Fransolet and M. Liégeois-Duyckaerts; J. Solid State Chem., 163(1), 194 (2002).

9. A. Daidouh, C. Durio, C. Pico, M. L. Veiga, N. Chouaibi and A. Ouassini; Solid State Science, 4(4), 541 (2002).

10. N. Chouaibi, A. Daidouh, C. Pico, A. Santrich and M. L. Veiga; J. Solid State Chem. 159(1), 46 (2001).

11. K. Trad, D. Carlier, L. Croguennec, A. Wattiaux, M. Ben Amara and C. Delmas; Chem. Mater., 22, 5554 (2010).

12. M. Hidouri, A. Wattiaux, L. Fournes, J. Darriet, M. B. Amara; Comptes Rendus Chimie (under press).

13. R. H. Blessing, “Dream, a Data Reduction and Error Analysis Program”, Med., Res. Found., Buffalo (1992).

14. A. Altomare, M. C Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. Moliterni, G. Polidori, R. Spagna; “SIR97:a new tool for crystal determination and refinement”; J. Appl. Crystallogr. 32, 115 (1999).

15. G. M Sheldrick; “SHELXL-97. Program for the Refinement of Crystal Structures”. University of Gottingen, Germany, 1997.

16. R. D. Shanon, C. T. Prewitt, Acta Cryst., A32 (1976) 751.

Downloads

Published

2010-11-15

How to Cite

Dridi, N., Arbib, E.-H., Karni, E. H., Capitelli, F., & Elouadi, B. (2010). Single Crystal X-Ray Structural Investigation of Alluaudite Related Monophosphate Na2FeMn2(PO4)3. Eurasian Chemico-Technological Journal, 12(3-4), 213–218. https://doi.org/10.18321/ectj47

Issue

Section

Articles