X-Ray Diffraction and Raman Spectroscopic Studies of Glasses and Glass-Ceramics Inside the A2O-MoO3-Nb2O5-P2O5 (A= Li, Na) Systems

Authors

  • H. Bih Equipe Sciences de Matériaux, FST-Errachidia, Marocco
  • L. Bih Equipe Sciences de Matériaux, FST-Errachidia, Marocco
  • M.P. F. Graca Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, 3810 – 193, Aveiro – Portugal
  • M. A. Valente Physics Department (I3N), Aveiro University, Campus Universitário de Santiago, 3810 – 193, Aveiro – Portugal
  • B. Elouadi University of the La Rochelle, France

DOI:

https://doi.org/10.18321/ectj46

Abstract

Phosphate glasses in the system (50-x)A2O-xMoO3-10Nb2O5-40P2O5 (AMo-40), with x=0; 30 and A=Li or Na were prepared by the melt quenching method. The effect in the crystallization behaviour of the glass due to the introduction of MoO3 in the glass composition and varying the molar ratio between network modifiers and network formers (M/F) was studied. The prepared glasses were heat-treated in air, at 550, 600 and 650 ºC for 4 hours. The structure, of the obtained samples, was studied by differential thermal analysis (DTA), X-ray powder diffraction (XRD), Raman spectroscopy and the morphology by scanning electron microscopy (SEM). It was found that the replacement of Li2O or Na2O by MoO3 reduces the number of the crystallised phases. In the lithium-niobiophosphate glasses the presence of MoO3 promotes the formation of NbOPO4 and reduces the formation of ortho- and pyro-phosphate phases. The thermal treatments affect the arrangements of the network structure of the AMo-40-glasses.

References

1. P.Y. Shih, Mater. Chem. Phys. 84 (2004) 151.

2. M.R. Reidmeyer, M. Rajaram, D.E. Day, J. Non-Cryst. Solids 85 (1986) 186.

3. C.M. Shaw, J.E. Shelby, Phys. Chem. Glasses 29 (1988) 87.

4. I.W. Donald, J. Mater. Sci. 28 (1993) 2841.

5. R.K. Brow, R.J. Kirkpatrick, G.L. Turner, J. Am. Ceram. Soc. 73 (1990) 2293.

6. J.D. Mackenzie, in: J.D. Mackenzie (Ed.), Modern Aspects of the Vitreous State, vol. 3, Butterworth, London,
1964, p. 126.

7. N.F. Mott, J. Non-Cryst. Solids 1 (1968) 1.

8. D. Adler, Amorphous Semiconductors, CRC, Cleveland, OH, 1971.

9. I.G. Austin, E.J. Garbett, in: P.G. LeComber, J. Mart (Eds.), Electronic and Structural Properties of Amorphous Semiconductors, Academic Press, London, 1973, p. 393.

10. F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46 (1992) 795.

11. B.V.R. Chowdari, K.F. Mok, J.M. Xie, R. Gopalakrisnan, Solid State Ionics 76 (1995) 189.

12. R. Winter, K. Siegmund, P. Heitjans, J. NonCryst. Solids 212 (1997) 215.

13. T. Takahashi, High Conductivity Solid Ionic Conductors, Recent trends and applications, World Scientific Publishers, 1989.

14. M.P.F. Graça, M.A. Valente, M.G. Ferreira da Silva, J. Mat. Sci., 41 (2006) 1137.

15. M.P.F. Graça, M.A. Valente, H. Bih, L. Bih, J. Non-Cryst. Solids, accepted.

16. C. Bechinger, M.S. Burdis, J.G. Zhang, Solid State Commun. 101 (1997) 753.

17. J. Scarminio, Sol. Energy Mater. Sol. Cells 79 (2003) 357.

18. X.G. Wang, Y.S. Jang, N.H. Yang, Y.M. Wang, L. Yuan, S.J. Pang, Sol. Energy Mater. Sol. Cells 63 (2000) 197.

19. C. Bechinger, D. Ebner, S. Herminghaus, P. Leiderer, Solid State Commun. 89 (1994) 205.

20. S.M.A. Durrani, E.E. Khawaja, M.A. Salim, M.F. Al-Kuhaili, A.M. Al- Shukri, Sol. Energy Mater. Sol. Cells 71 (2002) 313.

21. K.R. Padmanabhan, Nucl. Instrum. Methods Phys. Res., Sect. B 219 (2004) 942.

22. S.K. Deb, Philos. Mag. 27 (1972) 801.

23. D.R. Uhlmann, Mater. Sci. Res. 4 (1969) 172.

24. G.W. Scherer, Mater. Sci. Technol. 9 (1991) 119.

25. R. K. Brow, J. Non-Cryst.Solids, 263/264 (2000) 1.

26. A. El Jazouli, R. Brochu, J.C. Viala, R. Olazcuaga, C. Delmas, G. Le Flem, Ann. Chim. Fr. 7 (1982) 285–292.

27. A.A. Mc. Connel, J.S. Anderson, G.N.R. Rao, Spectrochim. Acta, 32A (1976) 1067.

28. R.D. Shannon, Acta Cryst. A, 32 (1976) 751.

29. K. Fukumi et S. Sakka, J. Mater. Sci., 28 (1988) 4305.

Downloads

Published

2010-11-15

How to Cite

Bih, H., Bih, L., Graca, M. F., Valente, M. A., & Elouadi, B. (2010). X-Ray Diffraction and Raman Spectroscopic Studies of Glasses and Glass-Ceramics Inside the A2O-MoO3-Nb2O5-P2O5 (A= Li, Na) Systems. Eurasian Chemico-Technological Journal, 12(3-4), 207–212. https://doi.org/10.18321/ectj46

Issue

Section

Articles