Synthesis and Spatial Structure of 3-Phenylacrylic Acid Octahydroquinolizin-1-Ylmethyl Ester and 2-(Octahydroquinolizin-1-Ylmethyl)Isoindole-1,3-Dione

Authors

  • Zh.S. Nurmaganbetov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Alikhanov str. 1, Karaganda, Kazakhstan; Karaganda Medical University, Gogol str., 40, Karaganda, Kazakhstan
  • O.A. Nurkenov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Alikhanov str. 1, Karaganda, Kazakhstan
  • S.D. Fazylov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, Alikhanov str. 1, Karaganda, Kazakhstan
  • D.M. Turdybekov Karaganda Technical University, Karaganda, N. Nazarbayev str., 56, Karaganda, Kazakhstan
  • Ye.V. Minayeva Karagandy Buketov University, Universitetskaya str., 28, Karaganda, Kazakhstan
  • G. Khabdolda Karaganda Medical University, Gogol str., 40, Karaganda, Kazakhstan
  • A.M. Ibraybekova Karaganda Medical University, Gogol str., 40, Karaganda, Kazakhstan
  • Zh.S. Tilla Karaganda Medical University, Gogol str., 40, Karaganda, Kazakhstan
  • K.M. Turdybekov Karagandy Buketov University, Universitetskaya str., 28, Karaganda, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1641

Keywords:

3-Phenylacrylic acid octahydroquinolizin-1-ylmethyl ester, 2-(octahydroquinolizin-1-ylmethyl)isoindole-1,3-dione, NMR spectroscopy, X-ray analysis, conformational analysis

Abstract

The reactions of lupinine alkaloid and its chlorine derivative with cinnamoyl chloride and 2-K-isoindole-1,3-dione were investigated to obtain 3-phenylacrylic acid octahydroquinolizin-1-ylmethyl ester and 2-(octahydroquinolizin-1-ylmethyl)isoindole-1,3-dione, respectively. The optimal conditions for carrying out the aforementioned reactions were determined, taking into account the nature of the solvent and medium. It was established that acylation of the molecule in a benzene medium, in the presence of trimethylamine, resulted in the formation of 3-phenylacrylic acid octahydroquinolizin-1-ylmethyl ester, with an 82% yield. It was demonstrated that the interaction of chlorolupinine with 2-K-isoindole-1,3-dione under Gabriel reaction conditions resulted in the formation of 2-(octahydroquinolizin-1-ylmethyl)isoindole-1,3-dione. The conformer with an axial orientation of the isoindole-1,3-dione substituent was observed to exhibit greater stability than the conformer with an equatorial orientation. The structure of the synthesized compounds was investigated by IR, 1H, and 13C NMR spectroscopy. The use of two-dimensional spectra in COSY (1H-1H) and HMQC (1H-13C) formats enabled the establishment of homo- and heteronuclear interactions, thereby confirming the structure of the compounds under investigation. The values of chemical shifts, multiplet and integrated intensity of 1H and 13C signals in one-dimensional NMR spectra of the novel compounds were determined. The crystal structures of 3-phenylacrylic acid octahydroquinolizin-1-ylmethyl ester and 2-(octahydroquinolizin-1-ylmethyl)isoindole-1,3-dione were elucidated through X-ray analysis.

References

(1). F.V. Romeo, S. Fabroni, G. Ballistreri, et al., Sustainability 10 (2018) 788−799. Crossref

(2). T. Tuzimski, A. Petruczynik, Molecules 26 (2021) 230. Crossref

(3). S. Ohmiya, Yakugaku Zasshi 127 (2007) 1557−1577. Crossref

(4). K. Saito, I. Murakoshi, Studies in Natural Products Chemistry 15 (1995) 519−549. Crossref

(5). W.N.N. Wan Othman, S.Y. Liew, K.Y. Khaw, et al., Bioorg. Med. Chem. 24 (2016) 4464−4469. Crossref

(6). A.A. Abduvakhabov, R.T. Tlegenov, Kh.Kh. Khaitbaev, et al., Chem. Nat. Compd. 26 (1990) 60−63. Crossref

(7). R.T. Tlegenov, D.N. Dalimov, Kh.Kh. Khaitbaev, et al., Chem. Nat. Compd. 26 (1990) 434−436. Crossref

(8). G. Marucci, M. Buccioni, D.D. Ben, et al., Neuropharmacology 190 (2020) 108352. Crossref

(9). A.A.D.T. Abeysinghe, R.D.U.S. Deshapriya, C. Udawatte, Life Sci. 256 (2020) 117996. Crossref

(10). E.L. Konrath, C. Santos Passos, L.C. Klein-Junior, A.T. Henriques, J. Pharm. Pharmacol. 65 (2013) 1701−1725. Crossref

(11). T. Coelho Dos Santos, T.M. Gomes, B.A.S. Pinto, et al., Therapy. Front. Pharmacol. 9 (2018) 1192. Crossref

(12). J.R. Hidalgo, M.A. Iramain, S.A. Brandan, J. Mater. Environ. Sci. 10 (2019) 854−871. URL

(13). A. Sparatore, F. Novelli, F. Sparatore, Helv. Chim. Acta 87 (2004) 580−591. Crossref

(14). I.A. Schepetkin, Zh.S. Nurmaganbetov, S.D. Fazylov, et al., Molecules 28 (2023) 3357. Crossref

(15). Zh.S. Nurmaganbetov, V.A. Savelyev, Y.V. Gatilov, et al., Chem. Heterocycl. Comp. 57 (2021) 911−919. Crossref

(16). Zh.S. Nurmaganbetov, S.D. Fazylov, K.M. Turdybekov, et al., Bulletin of the University of Karaganda − Chemistry 106 (2022) 12−22. Crossref

(17). O.A. Nurkenov, S.D. Fazylov, A.M. Gazaliev, Zh.S. Nurmaganbetov, Hinolizidinovye alkaloidy: Lupinin i tsitizin [Hinolizidinovye alkaloidy lupinin i citizin]. Karaganda: Glasir, 2022, 400 p. (in Russ.).

(18). A.E. Koziol, M. Gdaniec, Z. Kosturkiewicz, Acta Cryst. 36 (1980) 980−981. Crossref

(19). F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, J. Chem. Soc., Perkin Trans. 2 (1987) 1−19. Crossref

(20). A.E. Koziol, Z. Kosturkiewicz, H. Podkowinska, Acta Cryst. 34 (1978) 3491−3494. Crossref

(21). A. Gordon, R. Ford, Сhemist's satellite. Physicochemical properties, methods, bibliography [Sputnik himika. Fiziko-himicheskie svojstva, metodiki, bibliografija.]. Moskow, 1976, 541 p. (in Russ.). URL

(22). CrysAlisPro, Data Collection and Processing Software for Agilent X-ray Diffractometers. User Manual. Aligent Technologies, Ver. 1.171.37.34 (Release 2014). URL

Downloads

Published

2024-10-22

How to Cite

Nurmaganbetov, Z., Nurkenov, O., Fazylov, S., Turdybekov, D., Minayeva, Y., Khabdolda, G., … Turdybekov, K. (2024). Synthesis and Spatial Structure of 3-Phenylacrylic Acid Octahydroquinolizin-1-Ylmethyl Ester and 2-(Octahydroquinolizin-1-Ylmethyl)Isoindole-1,3-Dione. Eurasian Chemico-Technological Journal, 26(3), 175–183. https://doi.org/10.18321/ectj1641

Issue

Section

Articles

Most read articles by the same author(s)