Synthesis and Anti-Inflammatory Activity of New Nicotinoyl Amides

Authors

  • O.A. Nurkenov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan; Karaganda Industrial University, 30 Republic Ave., Temirtau, Kazakhstan
  • S.D. Fazylov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan
  • Zh.S. Nurmaganbetov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan
  • T.M. Seilkhanov Sh. Ualikhanov Kokshetau University, 76 Abay str., Kokshetau, Kazakhstan
  • A.Zh. Mendibayeva Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan; Karaganda Industrial University, 30 Republic Ave., Temirtau, Kazakhstan
  • S.K. Kabieva Karaganda Industrial University, 30 Republic Ave., Temirtau, Kazakhstan
  • E.M. Satbaeva Asfendiyarov Kazakh National Medical University, 94 Tole bi str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1640

Keywords:

nicotinic acid, chloranhydride, morpholine, cytisine, 1-adamantane, antiflammatory activity, NMR spectroscopy

Abstract

The article presents the results of a study of the amination reaction of nicotinic acid chlorohydride with amines morpholine, cytisine, and 1-aminoadamantane, which are often used in the search and creation of drugs for respiratory and circulatory stimulants. The study was conducted to search for new biologically active compounds with anti-inflammatory activity. The synthesis of new aminoamides was carried out by the interaction of nicotinic acid with molecules of morpholine, cytisine, and adamantane in anhydrous ethanol. As a result of the conducted studies, new amides of nicotinic acid with high yields (90.7–93.1%) were obtained. The structures of the new compounds were determined using NMR 1H and 13C spectroscopy methods, as well as data from two-dimensional spectra of COSY (1H-1H), HMQC (1H-13C), HMBC (1H-13C) and mass spectrometry. The results of an experimental study of the anti-inflammatory activity of synthesized new amides are presented. The anti-inflammatory effect of nicotinic acid N-adamantylamide was established, other new amides were ineffective compared with ibuprofen (p2 < 0.05).

References

(1). V.D. Boyarshinov, A.I. Mikhalev, S.V. Ukhov, et al., Basic Research [Fundamental'nye issledovanija] 9 (2014) 606–610. (in Russian). URL (date accessed: 10.10.2024).

(2). S.S. Petrova, E.S. Petrov, R.Z. Gilmanov, et al., Bulletin of the University of Technology [Vestnik tehnologicheskogo universiteta] 18 (2015) 50–52. (in Russian). URL

(3). O.A. Nurkenov, S.D. Fazylov, T.M. Seilkhanov, et al., Eurasian J. Chem. 2 (2023) 29–35. Crossref DOI: https://doi.org/10.31489/2959-0663/2-23-1

(4). A.N. Dubrovin, A.I. Mikhalev, S.V. Ukhov, et al., Basic Research [Fundamental'nye issledovanija] 3 (2014) 133–137. (in Russian).URL (date accessed: 10.10.2024).

(5). O.A. Nurkenov, S.D. Fazylov, G.Zh. Karipova, Isonicotinic acid hydrazide and its derivatives [Gidrazid izonikotinovoj kisloty i ih proizvodnye], Karaganda: Glasir, 2019, 156 p. (in Russian).

(6). E.A. Akishina, D.V. Kazak, E.A. Dikusar, Proceedings of the National Academy of Sciences of Belarus, Chemical Series 56 (2020) 301–310. Crossref DOI: https://doi.org/10.29235/1561-8331-2020-56-3-301-310

(7). A.A. Altaf, A. Shahzad, Z. Gul, et al., Journal of Drug Design and Medicinal Chemistry 1 (2015) 111. Crossref

(8). O.A. Nurkenov, I.V. Kulakov, S.D. Fazylov, Synthetic transformations of the alkaloid cytisine [Sinteticheskie transformacii alkaloida citizina], Karaganda: Glasir, 2012, 208 p. ISBN 978-601-7225-80-3

(9). Yu.N. Klimochkin, E.A. Ivleva, M.S. Zaborskaya, J. Org. Chem. 57 (2021) 219–229. Crossref DOI: https://doi.org/10.1134/S1070428021020081

(10). Changquan Calvin Sun, J. Pharm. Sci. 98 (2009) 1671–1687. Crossref DOI: https://doi.org/10.1002/jps.21552

(11). G.N. Gordadze, M.V. Giruts, Pet. Chem. 48 (2008) 414–419. Crossref DOI: https://doi.org/10.1134/S0965544108060029

(12). P. Karasek, J. Planeta, M. Roth, J. Chem. Eng. Data 53 (2008) 816–819. Crossref DOI: https://doi.org/10.1021/je700709m

(13). M. Šekutor, K. Molčanov, L. Cao, et al., Eur. J. Org. Chem. 12 (2014) 2533–2542. Crossref DOI: https://doi.org/10.1002/ejoc.201301844

(14). R.I. Khusnutdinov, R.R. Mukminov, R.I. Aminov, et al., Tetrahedron Lett. 56 (2015) 536–538. Crossref DOI: https://doi.org/10.1016/j.tetlet.2014.12.006

(15). A.F. Natalie, A.T. Boryslav, A. Merz, et al., Eur. J. Org. Chem. 28 (2007) 4738–4745. DOI: https://doi.org/10.1002/ejoc.200700378

(16). J.B. Ngilirabanga, A supramolecular derivatised study of BIS(Adamantan-1- Aminium) carbonate, Academia, 2014. URL

(17). G. Zoidis, Ch. Fytas, I. Papanastasiou, et al., Bioorg. Med. Chem. 14 (2006) 3341–3348. Crossref DOI: https://doi.org/10.1016/j.bmc.2005.12.056

(18). M.A. Iramain, J.R. Hidalgo, T. Sundius, et al., Heliyon 8 (2022) 101–102. Crossref DOI: https://doi.org/10.1016/j.heliyon.2022.e10102

(19). G. Stamatiou, B.F. George, F. George, et al., Petrochemistry 11 (2003) 5485–5492. Crossref DOI: https://doi.org/10.1016/j.bmc.2003.09.024

(20). O. Nurkenov, S. Fazylov, Zh. Nurmaganbetov, et al., News of the National Academy of Sciences of the Republic of Kazakhstan (series chemistry and technology) 1 (2024) 106–115. Crossref DOI: https://doi.org/10.32014/2024.2518-1491.211

(21). M.G.A. Galvão, M.A.R.C. Santos, Antonio JL Alves da Cunha, Cochr. Database of System. Rev. (2014). Crossref DOI: https://doi.org/10.1002/14651858.CD002745.pub4

(22). V.V. Poroikov, D.A. Filimonov, Yu.V. Borodina, et al., J. Chem. Inf. Comput. Sci. 40 (2000) 1349–1355. Crossref DOI: https://doi.org/10.1021/ci000383k

(23). M. Xu, A.K. Seneviratne, A.D. Schimmer, Aging (Albany NY) (2019) 3895–3897. Crossref DOI: https://doi.org/10.18632/aging.102055

(24). R.J. Hung, J.D. McKay, V. Gaborieau, P. Boffetta, Nature 452 (2008) 633–637. Crossref DOI: https://doi.org/10.1038/nature06885

(25). B.B. Newbould, British Journal of Pharmacology and Chemotherapy 21 (1963) 127–136. Crossref DOI: https://doi.org/10.1111/j.1476-5381.1963.tb01508.x

(26). A. Hackshaw, Br. J. Cancer 96 (2007) 1926. Crossref DOI: https://doi.org/10.1038/sj.bjc.6603786

(27). M. Denyer, J. Anat. 216 (2010) 543. Crossref DOI: https://doi.org/10.1111/j.1469-7580.2010.01210.x

(28). J.L. Peacock, Ph. Peacock. Oxford Handbook of Medical Statistics (1 ed.). Oxford University Press, (2011) 517. Crossref DOI: https://doi.org/10.1093/med/9780199551286.003.0001

Downloads

Published

22-10-2024

How to Cite

Nurkenov, O., Fazylov, S., Nurmaganbetov, Z., Seilkhanov, T., Mendibayeva, A., Kabieva, S., & Satbaeva, E. (2024). Synthesis and Anti-Inflammatory Activity of New Nicotinoyl Amides. Eurasian Chemico-Technological Journal, 26(3), 169–174. https://doi.org/10.18321/ectj1640

Issue

Section

Articles

Most read articles by the same author(s)