Synthesis and Anti-Inflammatory Activity of New Nicotinoyl Amides

Authors

  • O.A. Nurkenov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan; Karaganda Industrial University, 30 Republic Ave., Temirtau, Kazakhstan
  • S.D. Fazylov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan
  • Zh.S. Nurmaganbetov Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan
  • T.M. Seilkhanov Sh. Ualikhanov Kokshetau University, 76 Abay str., Kokshetau, Kazakhstan
  • A.Zh. Mendibayeva Institute of Organic Synthesis and Coal Chemistry of the Republic of Kazakhstan, 1 Alikhanov str., Karaganda, Kazakhstan; Karaganda Industrial University, 30 Republic Ave., Temirtau, Kazakhstan
  • S.K. Kabieva Karaganda Industrial University, 30 Republic Ave., Temirtau, Kazakhstan
  • E.M. Satbaeva Asfendiyarov Kazakh National Medical University, 94 Tole bi str., Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1640

Keywords:

nicotinic acid, chloranhydride, morpholine, cytisine, 1-adamantane, antiflammatory activity, NMR spectroscopy

Abstract

The article presents the results of a study of the amination reaction of nicotinic acid chlorohydride with amines morpholine, cytisine, and 1-aminoadamantane, which are often used in the search and creation of drugs for respiratory and circulatory stimulants. The study was conducted to search for new biologically active compounds with anti-inflammatory activity. The synthesis of new aminoamides was carried out by the interaction of nicotinic acid with molecules of morpholine, cytisine, and adamantane in anhydrous ethanol. As a result of the conducted studies, new amides of nicotinic acid with high yields (90.7–93.1%) were obtained. The structures of the new compounds were determined using NMR 1H and 13C spectroscopy methods, as well as data from two-dimensional spectra of COSY (1H-1H), HMQC (1H-13C), HMBC (1H-13C) and mass spectrometry. The results of an experimental study of the anti-inflammatory activity of synthesized new amides are presented. The anti-inflammatory effect of nicotinic acid N-adamantylamide was established, other new amides were ineffective compared with ibuprofen (p2 < 0.05).

References

(1). V.D. Boyarshinov, A.I. Mikhalev, S.V. Ukhov, et al., Basic Research [Fundamental'nye issledovanija] 9 (2014) 606–610. (in Russian). URL (date accessed: 10.10.2024).

(2). S.S. Petrova, E.S. Petrov, R.Z. Gilmanov, et al., Bulletin of the University of Technology [Vestnik tehnologicheskogo universiteta] 18 (2015) 50–52. (in Russian). URL

(3). O.A. Nurkenov, S.D. Fazylov, T.M. Seilkhanov, et al., Eurasian J. Chem. 2 (2023) 29–35. Crossref

(4). A.N. Dubrovin, A.I. Mikhalev, S.V. Ukhov, et al., Basic Research [Fundamental'nye issledovanija] 3 (2014) 133–137. (in Russian).URL (date accessed: 10.10.2024).

(5). O.A. Nurkenov, S.D. Fazylov, G.Zh. Karipova, Isonicotinic acid hydrazide and its derivatives [Gidrazid izonikotinovoj kisloty i ih proizvodnye], Karaganda: Glasir, 2019, 156 p. (in Russian).

(6). E.A. Akishina, D.V. Kazak, E.A. Dikusar, Proceedings of the National Academy of Sciences of Belarus, Chemical Series 56 (2020) 301–310. Crossref

(7). A.A. Altaf, A. Shahzad, Z. Gul, et al., Journal of Drug Design and Medicinal Chemistry 1 (2015) 111. Crossref

(8). O.A. Nurkenov, I.V. Kulakov, S.D. Fazylov, Synthetic transformations of the alkaloid cytisine [Sinteticheskie transformacii alkaloida citizina], Karaganda: Glasir, 2012, 208 p. ISBN 978-601-7225-80-3

(9). Yu.N. Klimochkin, E.A. Ivleva, M.S. Zaborskaya, J. Org. Chem. 57 (2021) 219–229. Crossref

(10). Changquan Calvin Sun, J. Pharm. Sci. 98 (2009) 1671–1687. Crossref

(11). G.N. Gordadze, M.V. Giruts, Pet. Chem. 48 (2008) 414–419. Crossref

(12). P. Karasek, J. Planeta, M. Roth, J. Chem. Eng. Data 53 (2008) 816–819. Crossref

(13). M. Šekutor, K. Molčanov, L. Cao, et al., Eur. J. Org. Chem. 12 (2014) 2533–2542. Crossref

(14). R.I. Khusnutdinov, R.R. Mukminov, R.I. Aminov, et al., Tetrahedron Lett. 56 (2015) 536–538. Crossref

(15). A.F. Natalie, A.T. Boryslav, A. Merz, et al., Eur. J. Org. Chem. 28 (2007) 4738–4745.

(16). J.B. Ngilirabanga, A supramolecular derivatised study of BIS(Adamantan-1- Aminium) carbonate, Academia, 2014. URL

(17). G. Zoidis, Ch. Fytas, I. Papanastasiou, et al., Bioorg. Med. Chem. 14 (2006) 3341–3348. Crossref

(18). M.A. Iramain, J.R. Hidalgo, T. Sundius, et al., Heliyon 8 (2022) 101–102. Crossref

(19). G. Stamatiou, B.F. George, F. George, et al., Petrochemistry 11 (2003) 5485–5492. Crossref

(20). O. Nurkenov, S. Fazylov, Zh. Nurmaganbetov, et al., News of the National Academy of Sciences of the Republic of Kazakhstan (series chemistry and technology) 1 (2024) 106–115. Crossref

(21). M.G.A. Galvão, M.A.R.C. Santos, Antonio JL Alves da Cunha, Cochr. Database of System. Rev. (2014). Crossref

(22). V.V. Poroikov, D.A. Filimonov, Yu.V. Borodina, et al., J. Chem. Inf. Comput. Sci. 40 (2000) 1349–1355. Crossref

(23). M. Xu, A.K. Seneviratne, A.D. Schimmer, Aging (Albany NY) (2019) 3895–3897. Crossref

(24). R.J. Hung, J.D. McKay, V. Gaborieau, P. Boffetta, Nature 452 (2008) 633–637. Crossref

(25). B.B. Newbould, British Journal of Pharmacology and Chemotherapy 21 (1963) 127–136. Crossref

(26). A. Hackshaw, Br. J. Cancer 96 (2007) 1926. Crossref

(27). M. Denyer, J. Anat. 216 (2010) 543. Crossref

(28). J.L. Peacock, Ph. Peacock. Oxford Handbook of Medical Statistics (1 ed.). Oxford University Press, (2011) 517. Crossref

Downloads

Published

2024-10-22

How to Cite

Nurkenov, O., Fazylov, S., Nurmaganbetov, Z., Seilkhanov, T., Mendibayeva, A., Kabieva, S., & Satbaeva, E. (2024). Synthesis and Anti-Inflammatory Activity of New Nicotinoyl Amides. Eurasian Chemico-Technological Journal, 26(3), 169–174. https://doi.org/10.18321/ectj1640

Issue

Section

Articles

Most read articles by the same author(s)