Increasing the Yield of Light Distillates by Wave Action on Oil Raw Materials
DOI:
https://doi.org/10.18321/ectj1083Keywords:
gasoline fraction yield, Vortex layer apparatus, activation of hydrocarbons, cavitationAbstract
The article presents the results of the electromagnetic activation of petroleum feed in the vortex layer apparatus. It is shown that under the electromagnetic influence, there is a significant increase in the proportion of straight-run gasoline fraction distillate, as well as a change in the physicochemical parameters of the light fractions obtained as a result of the cavitation effect and the low-temperature cracking. It has been established that the processes of wave action on oil occurring in the electromagnetic field zone lead to a change in the individual and group hydrocarbon composition of the distillates obtained. The gasoline fraction produced from activated petroleum, due to an increase in the proportion of aromatic compounds, has a high octane number compared to the original straight-run fraction and low content of alkenes, which allows us to recommend its use as a high-octane component of motor fuels in the compounding and production of commercial gasoline.
References
(1). N.V. Byshov, A.A. Simdyankin, I.A. Uspensky, R.V. Pukov, ARPN Journal of Engineering and Applied Sciences 14 (2019) 3753‒3756.
(2). F.G. Antes, L.O. Diehl, J.S.F. Pereira, R.C.L. Guimarães, R.A. Guarnieri, B.M.S. Ferreira, E.M.M. Flores, Ultrason. Sonochem. 35 (2017) 541‒546. Crossref
(3). G. Song, D.-H. Wang, Z. Zhang, M. Liu, Q. Xu, D.-Z. Zhao, Ultrason. Sonochem. 48 (2018) 103‒109. Crossref
(4). J.G. Speight, Catal. Today 98 (2004) 55‒60. Crossref
(5). M.S. Rana, V. Sámano, J. Ancheyta, J.A.I. Diaz, Fuel 86 (2007) 1216‒1231. Crossref
(6). D.A. Gubaidullin, P.P. Ossipov, Appl. Math. Comput. 219 (2013) 4535‒4544. Crossref
(7). N.A. Pivovarova, Pet. Chem. 59 (2019) 559‒569. Crossref
(8). D.S. Redwan, S.A. All, Fuel Science and Technology International 10 (1992) 141‒172. Crossref
(9). A. Hamasaki, T. Yago, M. Wakasa, J. Phys. Chem. B 112 (2008) 14185–14192. Crossref
(10). P. O’Connor, Studies in Surface Science and Catalysis 166 (2007) 227–251. Crossref
(11). Y. Tanimoto, H. Tanaka, Y. Fujiwara, M. Fujiwara, J. Phys. Chem. A 102 (1998) 5611–5615. Crossref
(12). L.H. Mahmood, M.F. Abid, M.I. Mohammed, Environment Protection Engineering 45 (2019) 5–19. Crossref
(13). Q. Tang, S. Lin, Y. Cheng, S. Liu, J.-R. Xiong, Ultrason. Sonochem. 20 (2013) 1168–1175. Crossref
(14). P.A. Mello, F.A. Duarte, M.A.G. Nunes, M.S. Alencar, E.M. Moreira, M. Korn, V.L. Dressler, E.M.M. Flores, Ultrason. Sonochem. 16 (2009) 732–736. Crossref
(15). R.F. Khamidullin, Kh.E. Kharlampidi, R.M. Nikulin, A.V. Sitalo, F.A. Sharaf, Chem. Technol. Fuels Oils 52 (2017) 670–678. Crossref
(16). B. Avvaru, N. Venkateswaran, P. Uppara, S.B. Iyengar, S.S. Katti, Ultrason. Sonochem. 42 (2018) 493–507. Crossref
(17). R. Gopinath, A.K. Dalai, J. Adjaye, Energy Fuels 20 (2006) 271–277. Crossref
(18). F. Cataldo, Ultrason. Sonochem. 7 (2000) 35– 43. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.