Effect of Current Density on Electrodeposition of Nickel-Organic Microcapsules Composite Coatings
DOI:
https://doi.org/10.18321/ectj1Abstract
A formation of protective composite coatings based on nickel and organic substance of inert nature, containing a corrosion inhibitor, encapsulated in a polymer shell, was studied. The microcapsules were
synthesized in an aqueous-organic emulsion using the method of formation of shell of the modified gelatine
on the surface of microdroplets. Composite coatings were obtained by electrochemical codeposition of nickel
matrix and microcapsules, suspended in the electrolyte. Changes of surface morphology, microhardness
and corrosive properties of coatings with respect to changes of deposition parameters of coatings were
investigated. The distribution of particle sizes in coatings depending on the current density was studied. It was shown that an increase in the mass fraction of the microcapsules in the coating leads to an increase in its corrosion resistance.
References
[2]. M. Lekka, C. Zanella, A. Klorikowska, P.L.Bonora, Electrochim. Acta 55 (2010) 7876–7883.
[3]. C.R. Carpenter, P.H. Shipway, Y. Zhu, Wear 271 (2011) 2100–2105.
[4]. A. Kentepozidou, C. Kiparissides, F. Kotzia, C. Kollia, N. Spyrellis, Journal of Materials Science 31 (1996) 1175–1181.
[5]. S.A. Lajevardi, T. Shahrabi, Appl. Surf. Sci. 256 (2010) 6775–6781.
[6]. M. Sabri, A.A. Sarabi, S. Maryam, N. Kondelo, Mater. Chem. Phys. 136 (2012) 566–569.
[7]. R.K. Saha, T.I. Khan, Surf. Coat. Technol. 205 (2010) 890–895.
[8]. J.-H. Ouyang, X.-S. Liang, J. Wen, Z.-G. Liu, Yang, Wear 271 (2011) 2037–2045.
[9]. I.J. Zvonkina, M. Hilt, Handbook of Smart Coatings for Materials Protection, Chapter 5, Woodhead Publishing Limited, 2014, P. 105–120.
[10]. A.H. Whitehead, H. Simunkova, P. Lammel, J. Wosik, N. Zhang, B. Gollas, Wear 270 (2011) 695–702.
[11]. K. Krishnaveni, S. Narayanan, S.K. Seshadri, J. Alloys Compd. 480 (2009) 765–770.
[12]. X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi, Surf. Coat. Technol. 191 (2005) 351–356.
[13]. M. Srivastava, J.N. Balaraju, B. Ravishankar, K.S. Rajama, Surf. Coat. Technol. 205 (2010) 66–75.
[14]. H.Z. Abdel, I.M. Ghayad, Mater. Lett. 53 (2002) 238–243.
[15]. Y.B. Zhou, B.Y. Qian, H.J. Zhang, Thin Solid Films 517 (2009) 3287–3291.
[16]. V. Zarghami, M. Ghorbani, J. Alloys Compd. 598 (2014) 236–242.
[17]. E. Rudnik, L. Burzynska, Ł. Dolasinski, M. Misiak, Appl. Surf. Sci. 256 (2010) 7414–7420.
[18]. A. Zoikis-Karathanasis, E.A. Pavlatou, N. Spyrellis, J. Alloys Compd. 494 (2010) 396– 403.
[19]. A. Sohrabi, A. Dolati, M. Ghorbani, A. Monfared, P. Stroeve, Mater. Chem. Phys.121 (2010) 97–505.
[20]. Y. Zhao, W. Zhang, L. Liao, H. Wang, W. Li, Physics Procedia 18 (2011) 216–221.
[21]. X. Liu, H. Zhang, J. Wang, Z. Wang, S. Wang, Surf. Coat. Technol. 206 (2012) 4976–4980.
[22]. W. Zhang, L.P. Liao, Y. Zhao, Handbook of Smart Coatings for Materials Protection, Chapter 12, Woodhead Publishing Limited, 2014, P. 287–306.
[23]. W. Wang, L. Xu, X. Li, Y. Yang, E. An, Corros. Sci. 80 (2014) 528–535.
[24]. M. Samadzadeh, Hatami Boura S., M. Peikari, A. Ashrafi, M. Kasiriha, Prog. Org. Coat. 70 (2011) 383–387.
[25]. Hatami Boura S., M. Peikari, A. Ashrafi, M. Samadzadeh, Prog. Org. Coat. 75 (2012) 292–300.
[26]. V. Sauvant-Moynot, S. Gonzalez, J. Kittel, Prog. Org. Coat. 63 (2008) 307–315.
[27]. S. Alexandridou, C. Kiparissides, J. Fransaer, J.P. Celis, Surf. Coat. Technol. 71 (1995) 267–276.
[28]. X.-Q. Xu, L.-Q. Zhu, W.-P. Li, H.-C. Liu, Transactions of Nonferrous Metals Society of China 21 (2011) 2210−2215.
[29]. L. Zhu, W. Zhang, F. Liu, H. Yinghe, Journal of Materials Science 39 (2004) 495–499.
[30]. Y. Zhao, W. Zhang, L.-P. Liao, S.-J. Wang, W.- J. Li, Appl. Surf. Sci. 258 (2012) 1915–1918.
[31]. X. Liu, H. Zhang, J. Wang, Z. Wang, S. Wang, Surf. Coat. Technol. 206 (2012) 4976–4980.
[32]. X. Xu, H. Liu, W. Li, L. Zhu, Mater. Lett. 65 (2011) 698–701.
[33]. X. Xu, L. Zhu, W. Li, H. Liu, Appl. Surf. Sci. 257 (2011) 5524–5528.
[34]. Y.S. Nikolayeva, S.T. Kokhmetova, A.P. Kurbatov, A.K. Galeyeva, Abstracts of the 3rd International Caucasian Symposium on polymers and modern materials, Tbilisi, 2013, p.65.
[35]. T.G. Shutava, S.S. Balkundi, Y.M. Lvov, J. Colloid Interface Sci. 330 (2009) 276–283.
[36]. A.K. Andriola, B.-G. Silva, R. Cyrille, B. Michel, S. Daniel, O.-W. Merten, J. Controlled Release 149 (2011) 209–224.
[37]. W. Li, G. Wu, H. Chen, M. Wang, ColloidsSurf., A: Physicochemical and Engineering Aspects 333 (2009) 133–137.
[38]. R. Dai, G. Wu, W. Li, Q. Zhou, X. Li, H. Chen, olloids Surf., A: Physicochemical and Engineering Aspects 362 (2010) 84–89.
[39]. J. Liu, C. Liu, Y. Liu, M. Chen, Y. Hu, Z. Yang, Colloids Surf., B: Biointerfaces 109 (2013) 103–108.
[40]. S. Sakai, S. Ito, K. Kawakami, Acta Biomaterialia 6 (2010) 3132–3137.
[41]. K. Nakagawa, N. Hiromistu, Colloids Surf., A: Physicochemical and Engineering Aspects 411 (2012) 129–139.
[42]. S.J. Griliches. Obeszhirivanie, travlenie i polirovanie metallov (Degreasing, etching and polishing of metals), Mashinostroyenie (Engineering), Leningrad (Sankt-Petersburg), 1983, p. 101 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.