Electrochemical Separation of Molybdenum and Tungsten Using Aqueous-Organic Electrolytes

Authors

  • L. K. Kudreeva al-Farabi Kazakh National University, Almaty, Kazakhstan
  • A. P. Kurbatov al-Farabi Kazakh National University, Almaty, Kazakhstan
  • D. Kh. Kamysbayev al-Farabi Kazakh National University, Almaty, Kazakhstan
  • A. R. Kalyyeva al-Farabi Kazakh National University, Almaty, Kazakhstan
  • N. Zh. Zhumasheva al-Farabi Kazakh National University, Almaty, Kazakhstan
  • M. B. Abilev S. Amanzholov East Kazakhstan University, 30 Gvardeiskoi divisii str. 34, Ust-Kamenogorsk, Kazakhstan
  • B. A. Serikbayev Center for Physical and Chemical Methods of Research and Analysis, Karasai batyr str. 95A, Almaty, Kazakhstan
  • A. Dauletbay al-Farabi Kazakh National University, Almaty, Kazakhstan; Center for Physical and Chemical Methods of Research and Analysis, Karasai batyr str. 95A, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj980

Keywords:

molybdenum, tungsten, electrochemical separation, anodic oxidation, mixed electrolytes

Abstract

Molybdenum is one of the valuable metals for the industry; its special properties make it extremely urgent to study the process of separation of molybdenum from other impurities. The article considers the optimization of electrochemical separation of molybdenum from Mo-W system. The electrochemical dissolution of molybdenum and tungsten in solutions of LiCl and NH4NO3 in dimethylsulfoxide was studied using polarization curves and calculation of the efficiency of anodic dissolution of molybdenum in the presence of tungsten. The electrolyte with a composition of 0.5 M LiCl; 5.2 M dimethylsulfoxide; 32.2 M water was selected as an effective solution for the electrochemical separation of molybdenum in the potential range of 1.0‒2.2 V. Results obtained in this study can be used for the development of selective separation method in the molybdenum production.

References

(1). F. Barrière, Coordin. Chem. Rev. 236 (2003) 71‒89. Crossref

(2). J.P. Bellenger, Y. Xu, X. Zhang, F.M.M. Morel, A.M.L. Kraepiel, Soil Biol. Biochem. 69 (2014) 413‒420. Crossref

(3). M.L. Kirk, B. Stein, Comprehensive Inorganic Chemistry II (Second Edition) 3 (2013) 263‒293. Crossref

(4). M.J. Pushie, G.N. George, Coordin. Chem. Rev. 255 (2011) 1055‒1084. Crossref

(5). B.W. Kwon, C. Ellefson, J. Breit, J. Kim, M.G. Norton, S. Ha, J. Power Sources 243 (2013) 203‒210. Crossref

(6). T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, H. Tanaka, P. Atanassov, Electrochim. Acta 215 (2016) 420‒426. Crossref

(7). Z. Li, K. Zhang, W. Wang, J. Qu, Y. Tian, B. Wang, X. Ma, J. Taiwan Inst. Chem. Eng. 68 (2016) 239‒245. Crossref

(8). Y. Wang, W. Tu, J. Hong, W. Zhang, R. Xu, J. Materiomics 2 (2016) 344‒349. Crossref

(9). E. Yavuz, K.V. Özdokur, İ. Çakar, S. Koçak, F.N. Ertaş, Electrochim. Acta 151 (2015) 72‒80. Crossref

(10). N.T. Smagulova, Z.K. Kairbekov, A.S. Maloletnev, L.K. Kudreeva, A.N. Sabitova, Solid Fuel Chem. 54 (2020) 214‒218. Crossref

(11). J. Hua, L.-X. Du, Y.-N. Ma, G.-S. Sun, H. Xie, R.D.K. Misra, Mater. Sci. Eng. A 640 (2015) 259‒266. Crossref

(12). L. Jinlong, L. Tongxiang, W. Chen, Mater. Lett. 171 (2016) 38‒41. Crossref

(13). S. Jung, C. Jeon, Y.H. Jo, W.-M. Choi, B.- J. Lee, Y.-J. Oh, S. Jang, S. Lee, Mater. Sci. Eng. A 656 (2016) 190‒199. Crossref

(14). D.G. Li, D.R. Chen, P. Liang, Ultrason. Sonochem. 35 (2017) 375‒381. Crossref

(15). J. Bi, L. Yao, J. Ao, S. Gao, G. Sun, Q. He, Z. Zhou, Y. Sun, Y. Zhang, J. Power Sources 326 (2016) 211‒219. Crossref

(16). W. Guan, G. Zhang, C. Gao, Hydrometallurgy 127 (2012) 84‒90. Crossref

(17). T.H. Nguyen, M.S. Lee, Hydrometallurgy 155 (2015) 51‒55. Crossref

(18). A.M. Pastukhov, S.Yu. Skripchenko, Hydrometallurgy 157 (2015) 78‒81. Crossref

(19). О.А. Yapryntseva, V.S. Kolosnitsyn, N.А. Yatsyk, N.N. Krasnogorskaya, Russ. J. Appl. Chem. 75 (2002) 662‒664. Crossref

(20). X.-Y. Lu, G.-S. Huo, C.-H. Liao, T. Nonferr. Metal. Soc. 24 (2014) 3008‒3013. Crossref

(21). J. Zhang, X. Liu, X. Chen, J. Li, Z. Zhao, Hydrometallurgy 144 (2014) 77‒85. Crossref

(22). Z. Zhao, J. Zhang, X. Chen, X. Liu, J. Li, W. Zhang, Hydrometallurgy 140 (2013) 120‒127. Crossref

(23). Z. Zhao, C. Cao, X. Chen, T. Nonferr. Metal. Soc. 21 (2011) 2758‒2763. Crossref

(24). Z. Zhao, C. Cao, X. Chen, G. Huo, Hydrometallurgy 108 (2011) 229‒232. Crossref

(25). A. Stephanie, M.-F. Chien, N. Ikeda, C. Inoue, Hydrometallurgy 198 (2020) 105491. Crossref

(26). C. Cao, X. Qiu, Y. Li, L. Yang, Zh. Pang, Zh. Yuan, Hydrometallurgy 197 (2020) 105392. Crossref

Downloads

Published

2020-09-30

How to Cite

Kudreeva, L. K., Kurbatov, A. P., Kamysbayev, D. K., Kalyyeva, A. R., Zhumasheva, N. Z., Abilev, M. B., … Dauletbay, A. (2020). Electrochemical Separation of Molybdenum and Tungsten Using Aqueous-Organic Electrolytes. Eurasian Chemico-Technological Journal, 22(3), 227‒233. https://doi.org/10.18321/ectj980

Issue

Section

Articles