Remarks on ISRU and ISFR Technologies for Manned Missions on Moon and Mars

Authors

  • A. Concas CRS4, Center for Advanced Studies, Research and Development in Sardinia Parco Scientifico e Tecnologico, POLARIS, Edificio 1, 09010 Pula, Cagliari, Italy
  • G. Corrias Centro Interdipartimentale di Ingegneria e Scienze Ambientali (CINSA) and Cagliari Laboratory of Consorzio Interuniversitario Nazionale “La Chimica per l’Ambiente” (INCA), Via San Giorgio 12, 09123 Cagliari, Italy
  • R. Orru Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Piazza d’Armi, 09123 Cagliari, Italy
  • R. Licheri Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Piazza d’Armi, 09123 Cagliari, Italy
  • M. Pisu CRS4, Center for Advanced Studies, Research and Development in Sardinia Parco Scientifico e Tecnologico, POLARIS, Edificio 1, 09010 Pula, Cagliari, Italy
  • G. Cao Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Centro Studi sulle Reazioni Autopropaganti (CESRA), Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Piazza d’Armi, 09123 Cagliari, Italy

DOI:

https://doi.org/10.18321/ectj120

Abstract

Space colonization and exploitation of extra-terrestrial natural resources could help humanity in facing various Earth problems. In this regard, production of energy and materials starting from Moon and Mars natural resources as well as the transportation of humans in space could be considered the long term remedy to issues such as overpopulation, depletion of fossil fuels, climate change as well as reduction of available natural resources. Along theses lines, two recently filed patents related to use of novel technologies for the in situ exploitation of natural resources available on Moon and Mars have been developed.

References

1. Bassler, J.A., Bodiford, M.P., Hammond, M.S., King, R., McLemore, C.A, Hall, N.R., Fiske, M.R., Ray, J.A. In Situ Fabrication and Repair (ISFR) Technologies, 44th AIAA Aerospace Sciences Meeting 6:4166-4172 (2006).

2. Howell, J.T., Fikes, J.C., McLemore, C.A., Good, J.E. On-site fabrication infrastructure to enable efficient exploration and utilization of space, International Astronautical Federation - 59th International Astronautical Congress 2008 12: 7842-7848 (2008).

3. Moore, J.J., Yi, H.C., Guigné J.Y. The application of Self-propagating High temperature (Combustion) Synthesis (SHS) for In-Situ Fabrication and Repair (ISFR), and InSitu Resource Utilization (ISRU), Int. J. SelfPropag. High Temp. Synth. 14: 131-149 (2005).

4. Sanders, G.B., Larson, W.E., Integration of insitu resource utilization into lunar/mars exploration through field analogs, Advances in Space Research 47 (1): 20-29 (2011).

5. Faierson, E.J., Logan, K.V., Stewart, B.K., Hunt, M.P. Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction, Acta Astronautica 67 (1-2): 38-45 (2010).

6. Miyazaki, E., Odawara, O. SHS technology for in-situ resource utilization in space Int. J. SelfPropag. High Temp. Synth. 12(4): 323-332 (2003).

7. Miyazaki, E., Odawara, O. Effects of microgravity and pressure on combustion synthesis applied to in-situ resource utilization, J. Space Technol. Sci. 18(1): 17-25 (2002).

8. Cao G, Concas A, Corrias G, Licheri R, Orrù R, Pisu M. A process for the production of useful materials to sustain manned space missions on Mars through in-situ resources utilization. Patent, Applicant: Università degli Studi di Cagliari, Italy, N. PCT/IB2012/053754 (2012).

9. Cao G., Concas A., Corrias G., Licheri R., Orrù R., Pisu M., Zanotti C., Fabrication process of physical assets for civil and/or industrial structures on the surface of Moon, Mars and/or asteroids, Patent 10453PTWO, Applicant: Università di Cagliari and Italian Space Agency, Italy, (2011).

10. Corrias G., Licheri R., Orrù R., Cao G., Selfpropagating High-temperature Synthesis Reactions for ISRU and ISFR Applications. Eurasian ChemTech Journal 13: 137 (2011).

11. Poughon, L., Farges, B., Dussap, C.G., Godia, F., Lasseur, C., Simulation of the MELiSSA closed loop system as a tool to define its integration strategy. Advances in Space Research 44, 1392-1403 (2009).

12. Williams, J.D., Coons, S.C. and Bruckner, A.F., Design of a water vapor adsorption reactor for Martian In Situ Resource Utilization. Journal of British Interplanetary Society, 48, 347-354 (1995).

13. Rapp, D., Karlmann, P.B., Clark, D.L., and Carr, C. M., Adsorption Compressor for Acquisition and Compression of Atmospheric CO2 on Mars. 33rd AIAA/ASME/SAE/ASEE, Joint Propulsion Conference and Exhibit, (1997).

14. Wiens, J.; Bommarito, F.; Blumenstein, E.; Ellsworth, M.; Cisar, T.; McKinney, B.; Knecht, B. Water Extraction from Martian Soil. 4th Annual HEDS-UP Forum, LPI Contribution No. 1106, p. 11 (2001).

15. Ostwald, W. Process of manufacturing nitric acid. US Pat. 858904 (1907).

16. SpaceX "Falcon 9 User's Guide". http://www.spacex.com/Falcon9UsersGuide_2 009.pdf. Retrieved 12 June 2010.

Downloads

Published

2012-09-28

How to Cite

Concas, A., Corrias, G., Orru, R., Licheri, R., Pisu, M., & Cao, G. (2012). Remarks on ISRU and ISFR Technologies for Manned Missions on Moon and Mars. Eurasian Chemico-Technological Journal, 14(3), 243–248. https://doi.org/10.18321/ectj120

Issue

Section

Articles