Separation Efficiency of Water/Oil Mixtures by Hydrophilic and Oleophobic Membranes Based on Stainless Steel Meshes with Openings of Various Sizes

Authors

  • F. R. Sultanov Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay batyr str, 172, 050012, Almaty, Kazakhstan
  • Ch. Daulbayev Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay batyr str, 172, 050012, Almaty, Kazakhstan
  • B. Bakbolat Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay batyr str, 172, 050012, Almaty, Kazakhstan
  • Z. A. Mansurov Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040, Almaty, Kazakhstan; Institute of Combustion Problems, Bogenbay batyr str, 172, 050012, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj721

Keywords:

membranes, oleophobicity, separation, mesh, dip-coating

Abstract

This article is focused on development of hydrophilic and oleophobic composition which serves as a coating for substrate presented by stainless steel meshes with different sizes of their openings. Membranes obtained by dip-coating method are hydrophilic and oleophobic and this may be applied for efficient separation of organic liquids and water by simple and inexpensive gravitational separation. Investigations presented in the article show that the size of openings of meshes influence on the formation of hydrophilicity and oleophobicity of membrane, as well as the nature of used polymers, which serve as a coating, since membranes based on 400 mesh coated with Poly(diallyldimethylammonium chloride) (PDDA)/ pentadecafluorooctanoic acid (PFOA)/SiO2 demonstrate different wettability in regard to organic liquids of different densities. In particular, membrane based on mesh 400 coated with PDDA/PFOA/SiO2 exhibits strong oleophobicity to less dense non-polar organic solvents – kerosene, which does not penetrate the membrane, while more dense liquids, such as vacuum pump oil, are able to penetrate it, but the rate of penetration is rather slow, 10 ml per 21 min. Obtaining of membranes with uniform coating by hydrophilic-oleophobic compositions without clogging of their openings and creation of openings of required sizes for a particular case is also a subject of study of this article.

References

(1). L. Jiang, Z. Tang, R.M. Clinton, D.W. Hess, V. Breedveld, Cellulose 23 (2016) 3885–3899. Crossref

(2). L. Feng, Z.Y. Zhang, Z.H. Mai, Y.M. Ma, B.Q. Liu, L. Jiang, D.B. Zhu, Angew. Chem. Int. Ed. 43 (2004) 2012–2014. Crossref

(3). T.T. Lim, X.F. Huang, Chemosphere 66 (2007) 955–963. Crossref

(4). Y.Z. Cao, X.Y. Zhang, L. Tao, K. Li, Z.X. Xue, L. Feng, Y. Wei, ACS Appl. Mater. Interf. 5 (2013) 4438–4442. Crossref

(5). L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang and D. Zhu, Angew. Chem. Int. Ed. 116 (2004) 2046–2048. Crossref

(6). X. Huang, T.T. Lim, Desalination 190 (2006) 295–307. Crossref

(7). F.R. Sultanov, B. Bakbolat, Z.A. Mansurov, Rabi Ebrahim, Ch. Daulbayev, A.A. Urazgalieva, M.I. Tulepov, Euras. Chem. Tech. J. 19 (2) (2017) 127–132. Crossref

(8). F. Sultanov, B. Bakbolat, Ch. Daulbaev, A. Urazgalieva, Z. Azizov, Z. Mansurov, M. Tulepov, S.S. Pei, J. Eng. Phys. Thermophys. 90 (2017) 826–830. Crossref

(9). H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, J.S. Qiu, Adv. Mater. 25 (2013) 2219–2223. Crossref

(10). G.T. Smagulova, S. Kim, N.G. Prikhod’ko, B.T. Lesbayev, A.V. Mironenko, A.A. Zakhidov, Z.A. Mansurov, Int. J Self-Propag. High-Temp. Synth. 25 (2016) 173–176. Crossref

(11). Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng, L. Jiang, Adv. Mater. 23 (2011) 4270– 4273. Crossref

(12). R.C.B. Lemons, E.B. de Silva, A. dos Santos, R.C.L. Guimaraes, B.M.S. Ferreira, R.A. Guarnieri, C. Dariva, E. Franceschi, A.F. Santos and M. Fortung, Energy Fuels 24 (2010) 4439– 4444. Crossref

(13). W.B. Zhang, Y.Z. Zhu, X. Liu, D. Wang, J.Y. Li, L. Jiang, J. Jin, Angew. Chem. Int. Ed. 53 (2014) 856–860. Crossref

(14). M.H. Tai, J. Juay, D.D. Sun, J.O. Leckie, Sep. Purif. Technol. 156 (2015) 952–960. Crossref

(15). P. Patel, C.K. Choi, D.D. Meng, JALA 15 (2010) 114–119. Crossref

(16). S.J. Pastine, D. Okawa, B. Kessler, M. Rolandi, M. Llorente, A. Zettl, J.M.J. Frechet, J. Am. Chem. Soc. 130 (2008) 4238–4239. Crossref

(17). J.K. Yuan, X.G. Liu, O. Akbulut, J.Q. Hu, S.L. Suib, J. Kong, F. Stellacci, Nat. Nanotechnol. 3 (2008) 332–336. Crossref

(18). N.R. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein, Nat. Nanotechnol. 2 (2007) 354–357. Crossref

(19). M. Jin, J. Wang, X. Yao, M. Liao, Y. Zhao, L. Jiang, Adv. Mater. 23 (2011) 2861–2864. Crossref

(20). D. Zahner, J. Abagat, F. Svec, J.M.J. Frechet, P.A. Levkin, Adv. Mater. 23 (2011) 3030–3034. Crossref

(21). L. Chen, M. Liu, H. Bai, P. Chen, F. Xia, D. Han, L. Jiang, J. Am. Chem. Soc.131 (2009) 10467–10472. Crossref

(22). P.S. Brown, O. Atkinson, J.P.S. Badyal, ACS Appl. Mater. Interf. 6 (2014) 7504–7511. Crossref

(23). J. Yang, L.T. Yin, H. Tang, H.J. Song, X.N. Gao, K. Liang, C.S. Li, Chem. Eng. J. 268 (2015) 245–250. Crossref

(24). X.Y. Zhu, W.T. Tu, K.H. Wee, R.B. Bai, J. Membr. Sci. 466 (2014) 36–44. Crossref

(25). R.A. Lampitt, J.M. Crowther, J.P.S. Badyal, J. Phys. Chem. B. 104 (2000) 10329–10331. Crossref

(26). H. Sawada, H. Yoshioka, T. Kawase, H. Takahashi, A. Abe, R. Ohashi, J. Appl. Polym. Sci. 98 (2005) 169–177. Crossref

(27). J.A. Howarter, J.P. Youngblood, Adv. Mater. 19 (2009) 3838–3843. Crossref

(28). S. Turri, R. Valsecchi, M. Vigano, M. Levi, Polym. Bull. 63 (2009) 235–243. Crossref

Downloads

Published

2018-09-07

How to Cite

Sultanov, F. R., Daulbayev, C., Bakbolat, B., & Mansurov, Z. A. (2018). Separation Efficiency of Water/Oil Mixtures by Hydrophilic and Oleophobic Membranes Based on Stainless Steel Meshes with Openings of Various Sizes. Eurasian Chemico-Technological Journal, 20(3), 195–200. https://doi.org/10.18321/ectj721

Issue

Section

Articles